For the given example choose the correct alternative and fill in the blanks:
$$\eqalign{
& {\left( {2012} \right)^3} + {\left( {2013} \right)^3} + {\left( {2014} \right)^3} - 3 \times 2012 \times 2013 \times 2014 \cr
& = \left( {......} \right) \times \left\{ {{{\left( {2012} \right)}^2} + {{\left( {2013} \right)}^2} + {{\left( {2014} \right)}^2} - 2012 \times 2013 - 2013 \times 2014 - 2014 \times 2012} \right\} \cr} $$
A).6036
B).6039
C).6042
D).6048
Last updated date: 24th Mar 2023
•
Total views: 307.5k
•
Views today: 7.85k
Answer
307.5k+ views
Hint: We are going to solve this problem by using formula of ${a^3} + {b^3} + {c^3}$
We have ${a^3} + {b^3} + {c^3} = (a + b + c)({a^2} + {b^2} + {c^2} - ab - bc - ac) + 3abc$
$ \Rightarrow {a^3} + {b^3} + {c^3} - 3abc = (a + b + c)({a^2} + {b^2} + {c^2} - ab - bc - ac)$
Let a=2012, b=2013, and c=2014, Taking L.H.S from the given equation
$ \Rightarrow {(2012)^3} + {(2013)^3} + {(2014)^3} - 3 \times 2012 \times 2013 \times 2014$
It is in the form of ${a^3} + {b^3} + {c^3} - 3abc$
$ = \left( {2012 + 2013 + 2014} \right)\left( {{{(2012)}^2} + {{(2013)}^2} + {{(2014)}^2} - 2012 \times 2013 - 2013 \times 2014 - 2014 \times 2012} \right)$$ = (6039)\left( {{{(2012)}^2} + {{(2013)}^2} + {{(2014)}^2} - 2012 \times 2013 - 2013 \times 2014 - 2014 \times 2012} \right)$
$\therefore $6039 is the number required in the given blank.
Note:
Here we solved the given problem using basic algebraic formula ${a^3} + {b^3} + {c^3} = (a + b + c)({a^2} + {b^2} + {c^2} - ab - bc - ac) + 3abc$
We compared the given problem with this formula and simplified the expression to get the required value.
We have ${a^3} + {b^3} + {c^3} = (a + b + c)({a^2} + {b^2} + {c^2} - ab - bc - ac) + 3abc$
$ \Rightarrow {a^3} + {b^3} + {c^3} - 3abc = (a + b + c)({a^2} + {b^2} + {c^2} - ab - bc - ac)$
Let a=2012, b=2013, and c=2014, Taking L.H.S from the given equation
$ \Rightarrow {(2012)^3} + {(2013)^3} + {(2014)^3} - 3 \times 2012 \times 2013 \times 2014$
It is in the form of ${a^3} + {b^3} + {c^3} - 3abc$
$ = \left( {2012 + 2013 + 2014} \right)\left( {{{(2012)}^2} + {{(2013)}^2} + {{(2014)}^2} - 2012 \times 2013 - 2013 \times 2014 - 2014 \times 2012} \right)$$ = (6039)\left( {{{(2012)}^2} + {{(2013)}^2} + {{(2014)}^2} - 2012 \times 2013 - 2013 \times 2014 - 2014 \times 2012} \right)$
$\therefore $6039 is the number required in the given blank.
Note:
Here we solved the given problem using basic algebraic formula ${a^3} + {b^3} + {c^3} = (a + b + c)({a^2} + {b^2} + {c^2} - ab - bc - ac) + 3abc$
We compared the given problem with this formula and simplified the expression to get the required value.
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE
