
For the given example choose the correct alternative and fill in the blanks:
$$\eqalign{
& {\left( {2012} \right)^3} + {\left( {2013} \right)^3} + {\left( {2014} \right)^3} - 3 \times 2012 \times 2013 \times 2014 \cr
& = \left( {......} \right) \times \left\{ {{{\left( {2012} \right)}^2} + {{\left( {2013} \right)}^2} + {{\left( {2014} \right)}^2} - 2012 \times 2013 - 2013 \times 2014 - 2014 \times 2012} \right\} \cr} $$
A).6036
B).6039
C).6042
D).6048
Answer
602.7k+ views
Hint: We are going to solve this problem by using formula of ${a^3} + {b^3} + {c^3}$
We have ${a^3} + {b^3} + {c^3} = (a + b + c)({a^2} + {b^2} + {c^2} - ab - bc - ac) + 3abc$
$ \Rightarrow {a^3} + {b^3} + {c^3} - 3abc = (a + b + c)({a^2} + {b^2} + {c^2} - ab - bc - ac)$
Let a=2012, b=2013, and c=2014, Taking L.H.S from the given equation
$ \Rightarrow {(2012)^3} + {(2013)^3} + {(2014)^3} - 3 \times 2012 \times 2013 \times 2014$
It is in the form of ${a^3} + {b^3} + {c^3} - 3abc$
$ = \left( {2012 + 2013 + 2014} \right)\left( {{{(2012)}^2} + {{(2013)}^2} + {{(2014)}^2} - 2012 \times 2013 - 2013 \times 2014 - 2014 \times 2012} \right)$$ = (6039)\left( {{{(2012)}^2} + {{(2013)}^2} + {{(2014)}^2} - 2012 \times 2013 - 2013 \times 2014 - 2014 \times 2012} \right)$
$\therefore $6039 is the number required in the given blank.
Note:
Here we solved the given problem using basic algebraic formula ${a^3} + {b^3} + {c^3} = (a + b + c)({a^2} + {b^2} + {c^2} - ab - bc - ac) + 3abc$
We compared the given problem with this formula and simplified the expression to get the required value.
We have ${a^3} + {b^3} + {c^3} = (a + b + c)({a^2} + {b^2} + {c^2} - ab - bc - ac) + 3abc$
$ \Rightarrow {a^3} + {b^3} + {c^3} - 3abc = (a + b + c)({a^2} + {b^2} + {c^2} - ab - bc - ac)$
Let a=2012, b=2013, and c=2014, Taking L.H.S from the given equation
$ \Rightarrow {(2012)^3} + {(2013)^3} + {(2014)^3} - 3 \times 2012 \times 2013 \times 2014$
It is in the form of ${a^3} + {b^3} + {c^3} - 3abc$
$ = \left( {2012 + 2013 + 2014} \right)\left( {{{(2012)}^2} + {{(2013)}^2} + {{(2014)}^2} - 2012 \times 2013 - 2013 \times 2014 - 2014 \times 2012} \right)$$ = (6039)\left( {{{(2012)}^2} + {{(2013)}^2} + {{(2014)}^2} - 2012 \times 2013 - 2013 \times 2014 - 2014 \times 2012} \right)$
$\therefore $6039 is the number required in the given blank.
Note:
Here we solved the given problem using basic algebraic formula ${a^3} + {b^3} + {c^3} = (a + b + c)({a^2} + {b^2} + {c^2} - ab - bc - ac) + 3abc$
We compared the given problem with this formula and simplified the expression to get the required value.
Recently Updated Pages
Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Class 10 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

How many members did the Constituent Assembly of India class 10 social science CBSE

Write an application to the principal requesting five class 10 english CBSE

The Constitution of India was adopted on A 26 November class 10 social science CBSE

