
For the given example choose the correct alternative and fill in the blanks:
$$\eqalign{
& {\left( {2012} \right)^3} + {\left( {2013} \right)^3} + {\left( {2014} \right)^3} - 3 \times 2012 \times 2013 \times 2014 \cr
& = \left( {......} \right) \times \left\{ {{{\left( {2012} \right)}^2} + {{\left( {2013} \right)}^2} + {{\left( {2014} \right)}^2} - 2012 \times 2013 - 2013 \times 2014 - 2014 \times 2012} \right\} \cr} $$
A).6036
B).6039
C).6042
D).6048
Answer
596.1k+ views
Hint: We are going to solve this problem by using formula of ${a^3} + {b^3} + {c^3}$
We have ${a^3} + {b^3} + {c^3} = (a + b + c)({a^2} + {b^2} + {c^2} - ab - bc - ac) + 3abc$
$ \Rightarrow {a^3} + {b^3} + {c^3} - 3abc = (a + b + c)({a^2} + {b^2} + {c^2} - ab - bc - ac)$
Let a=2012, b=2013, and c=2014, Taking L.H.S from the given equation
$ \Rightarrow {(2012)^3} + {(2013)^3} + {(2014)^3} - 3 \times 2012 \times 2013 \times 2014$
It is in the form of ${a^3} + {b^3} + {c^3} - 3abc$
$ = \left( {2012 + 2013 + 2014} \right)\left( {{{(2012)}^2} + {{(2013)}^2} + {{(2014)}^2} - 2012 \times 2013 - 2013 \times 2014 - 2014 \times 2012} \right)$$ = (6039)\left( {{{(2012)}^2} + {{(2013)}^2} + {{(2014)}^2} - 2012 \times 2013 - 2013 \times 2014 - 2014 \times 2012} \right)$
$\therefore $6039 is the number required in the given blank.
Note:
Here we solved the given problem using basic algebraic formula ${a^3} + {b^3} + {c^3} = (a + b + c)({a^2} + {b^2} + {c^2} - ab - bc - ac) + 3abc$
We compared the given problem with this formula and simplified the expression to get the required value.
We have ${a^3} + {b^3} + {c^3} = (a + b + c)({a^2} + {b^2} + {c^2} - ab - bc - ac) + 3abc$
$ \Rightarrow {a^3} + {b^3} + {c^3} - 3abc = (a + b + c)({a^2} + {b^2} + {c^2} - ab - bc - ac)$
Let a=2012, b=2013, and c=2014, Taking L.H.S from the given equation
$ \Rightarrow {(2012)^3} + {(2013)^3} + {(2014)^3} - 3 \times 2012 \times 2013 \times 2014$
It is in the form of ${a^3} + {b^3} + {c^3} - 3abc$
$ = \left( {2012 + 2013 + 2014} \right)\left( {{{(2012)}^2} + {{(2013)}^2} + {{(2014)}^2} - 2012 \times 2013 - 2013 \times 2014 - 2014 \times 2012} \right)$$ = (6039)\left( {{{(2012)}^2} + {{(2013)}^2} + {{(2014)}^2} - 2012 \times 2013 - 2013 \times 2014 - 2014 \times 2012} \right)$
$\therefore $6039 is the number required in the given blank.
Note:
Here we solved the given problem using basic algebraic formula ${a^3} + {b^3} + {c^3} = (a + b + c)({a^2} + {b^2} + {c^2} - ab - bc - ac) + 3abc$
We compared the given problem with this formula and simplified the expression to get the required value.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
Who composed the song Vande Mataram A RabindraNath class 10 social science CBSE

The revolutionary who died after 63 days of the hunger class 10 social science CBSE

The slogan of Bande Mataram was first adopted during class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Our national song Vande Mataram was taken from which class 10 social science CBSE

Leap year has days A 365 B 366 C 367 D 368 class 10 maths CBSE

