
For the equation $3{x^2} + px + 3 = 0;(p > 0),$ if one of the roots is square of the other. Then P is equal to:
A $\dfrac{1}{3}$
B 1
C 3
D $\dfrac{2}{3}$
Answer
609k+ views
Hint: If h, k are roots of the quadratic equation $a{x^2} + bx + c = 0$ then $h + k = - \dfrac{b}{a},hk = \dfrac{c}{a}$ .
The given quadratic equation is $3{x^2} + px + 3 = 0$ . Let $\alpha $ and $\beta $ be the two roots of the above equation. Given that $\beta = {\alpha ^2}$ . We know if the quadratic equation is in the form $a{x^2} + bx + c = 0$ and $h,k$ are its roots then $h + k = - \dfrac{b}{a},hk = \dfrac{c}{a}$ . According to our question,$
\alpha + \beta = \alpha + {\alpha ^2} = - \dfrac{p}{3}{\text{ - - - - - - - - }}(1) \\
\alpha \beta = \alpha .{\alpha ^2} = {\alpha ^3} = \dfrac{3}{3} = 1{\text{ - - - - - - - }}(2) \\
$
From equation (2), ${\alpha ^3} = 1$ then cube roots of unity are $1,\omega ,{\omega ^2}$ . Since, p is positive, 1 can’t be the root of the given equation. On substituting $\omega $ in place of $x$ in equation (1).
$
\omega + {\omega ^2} = - \dfrac{p}{3}{\text{ }}[\omega = \dfrac{{ - 1 + \sqrt {3i} }}{2}] \\
\Rightarrow - 1 = - \dfrac{p}{3} \\
\Rightarrow p = 3 \\
$
Hence, option C is correct.
Note: In this problem first we will find the sum and product of the roots then use cube roots of unity and its application to reach the required answer.
The given quadratic equation is $3{x^2} + px + 3 = 0$ . Let $\alpha $ and $\beta $ be the two roots of the above equation. Given that $\beta = {\alpha ^2}$ . We know if the quadratic equation is in the form $a{x^2} + bx + c = 0$ and $h,k$ are its roots then $h + k = - \dfrac{b}{a},hk = \dfrac{c}{a}$ . According to our question,$
\alpha + \beta = \alpha + {\alpha ^2} = - \dfrac{p}{3}{\text{ - - - - - - - - }}(1) \\
\alpha \beta = \alpha .{\alpha ^2} = {\alpha ^3} = \dfrac{3}{3} = 1{\text{ - - - - - - - }}(2) \\
$
From equation (2), ${\alpha ^3} = 1$ then cube roots of unity are $1,\omega ,{\omega ^2}$ . Since, p is positive, 1 can’t be the root of the given equation. On substituting $\omega $ in place of $x$ in equation (1).
$
\omega + {\omega ^2} = - \dfrac{p}{3}{\text{ }}[\omega = \dfrac{{ - 1 + \sqrt {3i} }}{2}] \\
\Rightarrow - 1 = - \dfrac{p}{3} \\
\Rightarrow p = 3 \\
$
Hence, option C is correct.
Note: In this problem first we will find the sum and product of the roots then use cube roots of unity and its application to reach the required answer.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

