Answer
Verified
388.8k+ views
Hint: The question given here deals with three simultaneous equations but only in two variables. A multiplication factor $k$ is present in two of the equations. We need to find the values of $k$ for which three equations will have the same solutions $x$ and $y$.
Complete step by step solution:
Given equations,
\[x + y = 1;\,kx + y = 3;\,x + ky = 5\]
Solving
\[
\;\;x + y = 1...(i) \\
\,kx + y = 3...(ii) \\
x + ky = 5...(iii) \\
\]
Subtracting (i) from (ii) we get
\[
kx + y = 3 \\
- \,(x + y) = 1 \\
\Rightarrow x = \dfrac{2}{{k - 1}} \\
\]
Subtracting (i) from (iii)
\[
x + ky = 5 \\
- \,(x + y) = 1 \\
\Rightarrow y = \dfrac{4}{{k - 1}} \\
\]
Multiplying (ii) with k and and subtracting (iii) from it
\[
{k^2}x + ky = 3k \\
- \,(x + ky) = 5 \\
\Rightarrow y = \dfrac{{3k - 5}}{{{k^2} - 1}} \\
\]
Multiplying (iii) with k and and subtracting (ii) from it
\[
{k^2}y + kx = 5k \\
- \,(y + kx) = 3 \\
\Rightarrow y = \dfrac{{5k - 3}}{{{k^2} - 1}} \\
\]
The values of x and y for all the equations will be the same. So, taking ratio of x and y
$
\Rightarrow \dfrac{{3k - 5}}{{5k - 3}} = \dfrac{2}{4} \\
\Rightarrow 6k - 10 = 5k - 3 \\
\Rightarrow k = 7 \\
$
Therefore, the equations will have roots for exactly one value of k. So, Option (B) is correct.
Note:
While solving the simultaneous equations keep in mind.
> No. of variables in the equation.
> If the number of equations is greater than or equal to the number of variables it is possible to find a solution.
> All the simultaneous equations to be solved will have the same roots.
Complete step by step solution:
Given equations,
\[x + y = 1;\,kx + y = 3;\,x + ky = 5\]
Solving
\[
\;\;x + y = 1...(i) \\
\,kx + y = 3...(ii) \\
x + ky = 5...(iii) \\
\]
Subtracting (i) from (ii) we get
\[
kx + y = 3 \\
- \,(x + y) = 1 \\
\Rightarrow x = \dfrac{2}{{k - 1}} \\
\]
Subtracting (i) from (iii)
\[
x + ky = 5 \\
- \,(x + y) = 1 \\
\Rightarrow y = \dfrac{4}{{k - 1}} \\
\]
Multiplying (ii) with k and and subtracting (iii) from it
\[
{k^2}x + ky = 3k \\
- \,(x + ky) = 5 \\
\Rightarrow y = \dfrac{{3k - 5}}{{{k^2} - 1}} \\
\]
Multiplying (iii) with k and and subtracting (ii) from it
\[
{k^2}y + kx = 5k \\
- \,(y + kx) = 3 \\
\Rightarrow y = \dfrac{{5k - 3}}{{{k^2} - 1}} \\
\]
The values of x and y for all the equations will be the same. So, taking ratio of x and y
$
\Rightarrow \dfrac{{3k - 5}}{{5k - 3}} = \dfrac{2}{4} \\
\Rightarrow 6k - 10 = 5k - 3 \\
\Rightarrow k = 7 \\
$
Therefore, the equations will have roots for exactly one value of k. So, Option (B) is correct.
Note:
While solving the simultaneous equations keep in mind.
> No. of variables in the equation.
> If the number of equations is greater than or equal to the number of variables it is possible to find a solution.
> All the simultaneous equations to be solved will have the same roots.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE