For a particle executing simple harmonic motion, the displacement $x$ is given by $x = A\cos \omega t$. Identify the graph, which represents the variation of potential energy $\left( U \right)$ as a function of time $t$ and displacement $x$.
A. I, III
B. II, III
C. I, IV
D. II, IV

Answer
252.3k+ views
Hint: The potential energy of a body in simple harmonic motion (S.H.M.) is directly proportional the square of its displacement. The potential energy is equal to the work done by the restoring force acting on the particle in S.H.M.
Complete step by step answer:
For a particle in simple harmonic motion, the force acting the particle is $F = - kx$.
Where, $k$ is a force constant and $x$ is the distance of the particle from its equilibrium position. Let $dW$be work done by the force in displacing the particle through a small distance $dx$.
$dW = - Fdx$
$ \Rightarrow dW = kxdx$
The total work done for the displacement $x$ is obtained by integrating the above equation between the limits $0$ to $x$.
$\int_0^W {dW} = \int_0^x {kxdx} $
On integration
$ \Rightarrow \left[ W \right]_0^W = \left[ {\dfrac{{k{x^2}}}{2}} \right]_0^x$
Further calculating
$ \Rightarrow W = \dfrac{1}{2}k{x^2}$
We know that the work done is equal to the potential energy of the particle.
Potential energy $U = \dfrac{1}{2}k{x^2}$
Again, $k = m{\omega ^2}$
Where, $m$ is the mass of the particle and $\omega $ is the angular speed of the particle.
Therefore, $U = \dfrac{1}{2}m{\omega ^2}{x^2}$ …… (1)
It is given that the displacement $x = A\cos \omega t$.
Substitute the value of $x$ in the above equation (1).
$U = \dfrac{1}{2}m{\omega ^2}{A^2}{\cos ^2}\omega t$ …… (2)
Now consider the equation (1).
At $x = 0$, $U = 0$ i.e., potential energy is minimum.
At $x = \pm A$, $U = \dfrac{1}{2}m{\omega ^2}{A^2}$ i.e., potential energy is maximum.
So, the variation of potential energy $\left( U \right)$ with displacement $\left( x \right)$ is shown below.
Now consider the equation (2).
Potential energy $U$ is a function of ${\cos ^2}\omega t$.
At $t = 0$, ${\cos ^2}0 = 1$ i.e., potential energy will be maximum.
At $t = \dfrac{\pi }{{2\omega }}$, ${\cos ^2}\left( {\dfrac{\pi }{2}} \right) = 0$ i.e., potential energy will be minimum.
So, the variation of potential energy $\left( U \right)$ with time $\left( t \right)$ is shown below.
Hence, the correct option is A.
Note: Simple harmonic motion is the motion in which the restoring force is proportional to its displacement from the mean position and opposes its increase. The total energy of the particle in S.H.M. always remains constant. It is shown in the below additional information.
Complete step by step answer:
For a particle in simple harmonic motion, the force acting the particle is $F = - kx$.
Where, $k$ is a force constant and $x$ is the distance of the particle from its equilibrium position. Let $dW$be work done by the force in displacing the particle through a small distance $dx$.
$dW = - Fdx$
$ \Rightarrow dW = kxdx$
The total work done for the displacement $x$ is obtained by integrating the above equation between the limits $0$ to $x$.
$\int_0^W {dW} = \int_0^x {kxdx} $
On integration
$ \Rightarrow \left[ W \right]_0^W = \left[ {\dfrac{{k{x^2}}}{2}} \right]_0^x$
Further calculating
$ \Rightarrow W = \dfrac{1}{2}k{x^2}$
We know that the work done is equal to the potential energy of the particle.
Potential energy $U = \dfrac{1}{2}k{x^2}$
Again, $k = m{\omega ^2}$
Where, $m$ is the mass of the particle and $\omega $ is the angular speed of the particle.
Therefore, $U = \dfrac{1}{2}m{\omega ^2}{x^2}$ …… (1)
It is given that the displacement $x = A\cos \omega t$.
Substitute the value of $x$ in the above equation (1).
$U = \dfrac{1}{2}m{\omega ^2}{A^2}{\cos ^2}\omega t$ …… (2)
Now consider the equation (1).
At $x = 0$, $U = 0$ i.e., potential energy is minimum.
At $x = \pm A$, $U = \dfrac{1}{2}m{\omega ^2}{A^2}$ i.e., potential energy is maximum.
So, the variation of potential energy $\left( U \right)$ with displacement $\left( x \right)$ is shown below.

Now consider the equation (2).
Potential energy $U$ is a function of ${\cos ^2}\omega t$.
At $t = 0$, ${\cos ^2}0 = 1$ i.e., potential energy will be maximum.
At $t = \dfrac{\pi }{{2\omega }}$, ${\cos ^2}\left( {\dfrac{\pi }{2}} \right) = 0$ i.e., potential energy will be minimum.
So, the variation of potential energy $\left( U \right)$ with time $\left( t \right)$ is shown below.

Hence, the correct option is A.
Note: Simple harmonic motion is the motion in which the restoring force is proportional to its displacement from the mean position and opposes its increase. The total energy of the particle in S.H.M. always remains constant. It is shown in the below additional information.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Define absolute refractive index of a medium

Which of the following would not be a valid reason class 11 biology CBSE

Why should electric field lines never cross each other class 12 physics CBSE

An electrostatic field line is a continuous curve That class 12 physics CBSE

What is meant by monosporic development of female class 11 biology CBSE

Trending doubts
Which of the following Chief Justice of India has acted class 10 social science CBSE

Green glands are excretory organs of A Crustaceans class 11 biology CBSE

What if photosynthesis does not occur in plants class 11 biology CBSE

What is 1 divided by 0 class 8 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

10 slogans on organ donation class 8 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is the past tense of read class 10 english CBSE
