Answer
Verified
494.7k+ views
Hint: Start by taking the present age of father and son to be x and y respectively. Then according to the conditions given in the question, form the equation and solve the equation by performing arithmetic operations.
Complete step-by-step answer:
Let x be the present age of father and y be the present age of son.
According to the question, after 5 years father’s age will be (x+5) and son’s age will be (y+5), then
x+5 = 3(y+5)
x-3y-10 = 0 …..(1)
According to the question, another condition is given such that,
Five years ago, the age of the father was (x-5) and son’s age was (y-5), so according to the condition,
(x-5) = 7(y-5)
x-7y+30 = 0 …..(2)
Now we will solve (1) and (2), by subtracting (1) from (2),
$ - 3y + 7y - 10 - 30 = 0$
$ \Rightarrow y = 10$
We have found the age of son, now to find the age of father we are going to put the value of y in one of the equations,
Let us put y = 10 in (1),
$x - 3\left( {10} \right) - 10 = 0$
$ \Rightarrow x = 40$
Therefore, father’s present age is 40 and son’s present age is 10.
Note: In age problems, if we have one person we can easily solve it by taking one variable and forming an equation using the condition given. In case there are 2 people, we assign one variable to one of the people and the second variable to the other one and then form equations using the conditions given in the question.
Complete step-by-step answer:
Let x be the present age of father and y be the present age of son.
According to the question, after 5 years father’s age will be (x+5) and son’s age will be (y+5), then
x+5 = 3(y+5)
x-3y-10 = 0 …..(1)
According to the question, another condition is given such that,
Five years ago, the age of the father was (x-5) and son’s age was (y-5), so according to the condition,
(x-5) = 7(y-5)
x-7y+30 = 0 …..(2)
Now we will solve (1) and (2), by subtracting (1) from (2),
$ - 3y + 7y - 10 - 30 = 0$
$ \Rightarrow y = 10$
We have found the age of son, now to find the age of father we are going to put the value of y in one of the equations,
Let us put y = 10 in (1),
$x - 3\left( {10} \right) - 10 = 0$
$ \Rightarrow x = 40$
Therefore, father’s present age is 40 and son’s present age is 10.
Note: In age problems, if we have one person we can easily solve it by taking one variable and forming an equation using the condition given. In case there are 2 people, we assign one variable to one of the people and the second variable to the other one and then form equations using the conditions given in the question.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it