
Find whether 0 (zero) is a term of the A.P. $40,37,34,31,....$
Answer
605.7k+ views
Hint- In order to solve such a question consider 0 to be a term, then with the help of formula of nth term of an A.P. find the value of n or the term number. If the value of n be an integer then our consideration will be right otherwise wrong.
Complete step-by-step solution -
Given A.P. is $40,37,34,31,....$
For a general A.P. with $a$ as first term and $d$ be its common difference.
Nth term of the general A.P. is
${a_n} = a + \left( {n - 1} \right)d$
For the given A.P.
$
a = 40 \\
d = {a_2} - {a_1} = 37 - 40 = - 3 \\
$
Let us consider 0 is the nth term of the A.P.
$ \Rightarrow {a_n} = 0$
Also we have
$
\Rightarrow {a_n} = a + \left( {n - 1} \right)d = 0 \\
\Rightarrow 40 + \left( {n - 1} \right)\left( { - 3} \right) = 0 \\
$
Solving the equation for the value of n
\[
\Rightarrow 40 + \left( {n - 1} \right)\left( { - 3} \right) = 0 \\
\Rightarrow \left( {n - 1} \right)\left( { - 3} \right) = - 40 \\
\Rightarrow \left( {n - 1} \right)\left( 3 \right) = 40 \\
\Rightarrow \left( {n - 1} \right) = \dfrac{{40}}{3} \\
\Rightarrow n = \dfrac{{40}}{3} + 1 \\
\Rightarrow n = \dfrac{{40 + 3}}{3} \\
\Rightarrow n = \dfrac{{43}}{3} \\
\]
Since the term number in an A.P. cannot be a decimal number. It can only be an integer. So our consideration is false.
Hence, 0 is not a term of the given A.P.
Note- An arithmetic progression is a sequence of numbers such that the difference of any two successive members is a constant. For example, the sequence 2, 4, 6, 8 ... is an arithmetic progression with common difference 2. Always remember the formula of the nth term of an A.P. and the sum of an A.P.
Complete step-by-step solution -
Given A.P. is $40,37,34,31,....$
For a general A.P. with $a$ as first term and $d$ be its common difference.
Nth term of the general A.P. is
${a_n} = a + \left( {n - 1} \right)d$
For the given A.P.
$
a = 40 \\
d = {a_2} - {a_1} = 37 - 40 = - 3 \\
$
Let us consider 0 is the nth term of the A.P.
$ \Rightarrow {a_n} = 0$
Also we have
$
\Rightarrow {a_n} = a + \left( {n - 1} \right)d = 0 \\
\Rightarrow 40 + \left( {n - 1} \right)\left( { - 3} \right) = 0 \\
$
Solving the equation for the value of n
\[
\Rightarrow 40 + \left( {n - 1} \right)\left( { - 3} \right) = 0 \\
\Rightarrow \left( {n - 1} \right)\left( { - 3} \right) = - 40 \\
\Rightarrow \left( {n - 1} \right)\left( 3 \right) = 40 \\
\Rightarrow \left( {n - 1} \right) = \dfrac{{40}}{3} \\
\Rightarrow n = \dfrac{{40}}{3} + 1 \\
\Rightarrow n = \dfrac{{40 + 3}}{3} \\
\Rightarrow n = \dfrac{{43}}{3} \\
\]
Since the term number in an A.P. cannot be a decimal number. It can only be an integer. So our consideration is false.
Hence, 0 is not a term of the given A.P.
Note- An arithmetic progression is a sequence of numbers such that the difference of any two successive members is a constant. For example, the sequence 2, 4, 6, 8 ... is an arithmetic progression with common difference 2. Always remember the formula of the nth term of an A.P. and the sum of an A.P.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

