
Find two rational and two irrational number between \[\sqrt 2 \] and \[\sqrt 3 \]
Answer
579.9k+ views
Hint: As we know that \[\sqrt 2 \] and \[\sqrt {\text{3}} \] are irrational numbers so their approximate values are \[1.414\] and \[{\text{1}}{\text{.732}}\]. Now , we need to calculate rational an irrational number between \[1.414\] and \[{\text{1}}{\text{.732}}\]
Complete step by step answer:
Given Irrational Numbers \[\sqrt 2 \] and \[\sqrt {\text{3}} \]
Firstly find its rational and so we need to consider rational points for that,
Calculating rational numbers between \[1.4\]and \[1.7\].
So, they are \[ \Rightarrow \dfrac{{1.4 + 1.7}}{2} = 1.55\] and can also be integers as \[1.5,1.6...\]
And now calculating the irrational terms,
\[ \Rightarrow \dfrac{{\sqrt 2 + \sqrt 3 }}{2} = 1.572\]
So the numbers between \[\sqrt 2 \] and \[\sqrt {\text{3}} \] which are non-terminating and cannot be expressed in \[\dfrac{{\text{p}}}{q}\] form, so it can be \[1.665\overline 7 ,1.543\overline 9 ,....\]
Hence, \[1.5,1.6\] are 2 rational numbers and \[1.665\overline 7 ,1.543\overline 9 \] are irrational terms between \[\sqrt 2 \] and \[\sqrt {\text{3}} \].
Note: An Irrational Number is a real number that cannot be written as a simple fraction. Irrational means, not Rational number.
A number that can be made by dividing two integers (an integer is a number with no fractional part). The word comes from "ratio".
A numeral system (or system of numeration) is a writing system for expressing numbers; that is, a mathematical notation for representing numbers of a given set, using digits or other symbols in a consistent manner.
Complete step by step answer:
Given Irrational Numbers \[\sqrt 2 \] and \[\sqrt {\text{3}} \]
Firstly find its rational and so we need to consider rational points for that,
Calculating rational numbers between \[1.4\]and \[1.7\].
So, they are \[ \Rightarrow \dfrac{{1.4 + 1.7}}{2} = 1.55\] and can also be integers as \[1.5,1.6...\]
And now calculating the irrational terms,
\[ \Rightarrow \dfrac{{\sqrt 2 + \sqrt 3 }}{2} = 1.572\]
So the numbers between \[\sqrt 2 \] and \[\sqrt {\text{3}} \] which are non-terminating and cannot be expressed in \[\dfrac{{\text{p}}}{q}\] form, so it can be \[1.665\overline 7 ,1.543\overline 9 ,....\]
Hence, \[1.5,1.6\] are 2 rational numbers and \[1.665\overline 7 ,1.543\overline 9 \] are irrational terms between \[\sqrt 2 \] and \[\sqrt {\text{3}} \].
Note: An Irrational Number is a real number that cannot be written as a simple fraction. Irrational means, not Rational number.
A number that can be made by dividing two integers (an integer is a number with no fractional part). The word comes from "ratio".
A numeral system (or system of numeration) is a writing system for expressing numbers; that is, a mathematical notation for representing numbers of a given set, using digits or other symbols in a consistent manner.
Recently Updated Pages
Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the Full Form of ISI and RAW

