Answer

Verified

451.5k+ views

Hint- Here we will be using the actual sum and product of zeros of quadratic polynomials that we can find by Sridharacharya formula and later on compare with the formula for sum and product of roots of any quadratic equation.

Complete step-by-step answer:

We have, a quadratic equation \[4{{\text{x}}^2} - 7x - 3\]

Sridharacharya formula is actually the quadratic formula, used for finding the roots of a quadratic equation \[{\text{a}}{{\text{x}}^2}{\text{ + bx + c = 0}}\] , where a not equal to 0 , & a, b, c are real coefficients of the equation \[{\text{a}}{{\text{x}}^2}{\text{ + bx + c = 0}}\]

Being quadratic it has 2 roots.

X = $\dfrac{{\left( { - {\text{b + }}\sqrt {{{\text{b}}^2} - 4{\text{ac}}} } \right)}}{{2{\text{a}}}}{\text{ & }}\dfrac{{\left( { - {\text{b - }}\sqrt {{{\text{b}}^2} - 4{\text{ac}}} } \right)}}{{2{\text{a}}}}$ --(1)

On comparing the given equation \[4{{\text{x}}^2} - 7x - 3\] with the general quadratic equation \[{\text{a}}{{\text{x}}^2}{\text{ + bx + c = 0}}\] we got values of coefficients a = 4, b = -7, c = -3

On putting the value of coefficients a, b, c in equation (1)

${\text{x = }}\dfrac{{\left( { - ( - 7){\text{ + }}\sqrt {{{( - 7)}^2} - 4 \times (4) \times ( - 3)} } \right)}}{{2 \times 4}}{\text{ & }}\dfrac{{\left( { - ( - 7){\text{ - }}\sqrt {{{( - 7)}^2} - 4 \times (4) \times ( - 3)} } \right)}}{{2 \times 4}}$

${\text{x = }}\dfrac{{\left( {{\text{7 + }}\sqrt {97} } \right)}}{8}{\text{ & }}\dfrac{{\left( {{\text{7 - }}\sqrt {97} } \right)}}{8}$

We know that if discriminant D $ \geqslant {\text{0}}$ then it will give real and distinct roots.

Here D= ${\text{ = }}\sqrt {{{( - 7)}^2} - 4 \times 4 \times ( - 3)} {\text{ = }}\sqrt {97} {\text{ }} \geqslant {\text{0}}$ Therefore we got two distinct real roots ${{\text{x}}_1}{\text{ = }}\dfrac{{\left( {{\text{7 + }}\sqrt {97} } \right)}}{8}{\text{ \& }}{{\text{x}}_2}{\text{ = }}\dfrac{{\left( {{\text{7 - }}\sqrt {97} } \right)}}{8}$

Sum of roots \[{{\text{x}}_1}{\text{ + }}{{\text{x}}_2}{\text{ = }}\dfrac{{\left( {{\text{7 + }}\sqrt {97} } \right)}}{8}{\text{ + }}\dfrac{{\left( {{\text{7 - }}\sqrt {97} } \right)}}{8} = {\text{ }}\dfrac{{7 + \sqrt {97} + 7 - \sqrt {97} {\text{ }}}}{8}{\text{ }}\]

On solving

Sum of roots = $\left( {\dfrac{{14}}{8}} \right) = {\text{ }}\left( {\dfrac{7}{4}} \right)$--- (2)

Product of roots = \[{{\text{x}}_1}{\text{ }} \times {\text{ }}{{\text{x}}_2}{\text{ = }}\dfrac{{\left( {{\text{7 + }}\sqrt {97} } \right)}}{8}{\text{ }} \times {\text{ }}\dfrac{{\left( {{\text{7 - }}\sqrt {97} } \right)}}{8} = {\text{ }}\dfrac{{(7 + \sqrt {97} {\text{ )}} \times (7 - \sqrt {97} {\text{ ) }}}}{8}{\text{ }}\]

Using identity $\left( {{{\text{a}}^2}{\text{ - }}{{\text{b}}^2}} \right){\text{ = (a + b)(a - b)}}$

\[{{\text{x}}_1}{\text{ }} \times {\text{ }}{{\text{x}}_2}{\text{ = }}\dfrac{{(7 + \sqrt {97} {\text{ )}} \times (7 - \sqrt {97} {\text{ ) }}}}{{8 \times 8}}{\text{ = }}\dfrac{{(49 - 97)}}{{64}} = \dfrac{{ - 48}}{{{\text{ }}64}}\]

On reducing the fraction

Product of roots = \[{{\text{x}}_1}{\text{ }} \times {\text{ }}{{\text{x}}_2} = \dfrac{{ - 48}}{{{\text{ }}64}} = \dfrac{{ - 3}}{{{\text{ 4}}}}\] --- (3)

We know that , In general quadratic equation \[{\text{a}}{{\text{x}}^2}{\text{ + bx + c = 0}}\]

sum of roots equal to $\left( {\dfrac{{ - {\text{b}}}}{{\text{a}}}} \right)$ and product of roots equal to $\left( {\dfrac{{\text{c}}}{{\text{a}}}} \right)$

According to above results

In the given quadratic equation \[4{{\text{x}}^2} - 7x - 3\],

values of coefficients a = 4, b = -7, c = -3

On putting the values of coefficients

sum of roots = $\left( {\dfrac{{ - ( - 7)}}{4}} \right) = \dfrac{7}{4}$ --- (4)

and product of roots equal to $\left( {\dfrac{{ - 3}}{4}} \right)$--- (5)

According to equation 2 and 4, It has been proved that sum of zeros equal to $\left( {\dfrac{{ - {\text{b}}}}{{\text{a}}}} \right)$ which is a coefficient relation. Similarly by equation 3 and 5, It has been proved that product of zeros equal to $\left( {\dfrac{{\text{c}}}{{\text{a}}}} \right)$

Note- In these types of problems, we have to compare the given quadratic equation with the general quadratic equation and find the coefficient so that we can apply the sum of roots and product of roots formula. In order to find zeroes either use the Sridharacharya formula or factorise by the middle term split method.

Complete step-by-step answer:

We have, a quadratic equation \[4{{\text{x}}^2} - 7x - 3\]

Sridharacharya formula is actually the quadratic formula, used for finding the roots of a quadratic equation \[{\text{a}}{{\text{x}}^2}{\text{ + bx + c = 0}}\] , where a not equal to 0 , & a, b, c are real coefficients of the equation \[{\text{a}}{{\text{x}}^2}{\text{ + bx + c = 0}}\]

Being quadratic it has 2 roots.

X = $\dfrac{{\left( { - {\text{b + }}\sqrt {{{\text{b}}^2} - 4{\text{ac}}} } \right)}}{{2{\text{a}}}}{\text{ & }}\dfrac{{\left( { - {\text{b - }}\sqrt {{{\text{b}}^2} - 4{\text{ac}}} } \right)}}{{2{\text{a}}}}$ --(1)

On comparing the given equation \[4{{\text{x}}^2} - 7x - 3\] with the general quadratic equation \[{\text{a}}{{\text{x}}^2}{\text{ + bx + c = 0}}\] we got values of coefficients a = 4, b = -7, c = -3

On putting the value of coefficients a, b, c in equation (1)

${\text{x = }}\dfrac{{\left( { - ( - 7){\text{ + }}\sqrt {{{( - 7)}^2} - 4 \times (4) \times ( - 3)} } \right)}}{{2 \times 4}}{\text{ & }}\dfrac{{\left( { - ( - 7){\text{ - }}\sqrt {{{( - 7)}^2} - 4 \times (4) \times ( - 3)} } \right)}}{{2 \times 4}}$

${\text{x = }}\dfrac{{\left( {{\text{7 + }}\sqrt {97} } \right)}}{8}{\text{ & }}\dfrac{{\left( {{\text{7 - }}\sqrt {97} } \right)}}{8}$

We know that if discriminant D $ \geqslant {\text{0}}$ then it will give real and distinct roots.

Here D= ${\text{ = }}\sqrt {{{( - 7)}^2} - 4 \times 4 \times ( - 3)} {\text{ = }}\sqrt {97} {\text{ }} \geqslant {\text{0}}$ Therefore we got two distinct real roots ${{\text{x}}_1}{\text{ = }}\dfrac{{\left( {{\text{7 + }}\sqrt {97} } \right)}}{8}{\text{ \& }}{{\text{x}}_2}{\text{ = }}\dfrac{{\left( {{\text{7 - }}\sqrt {97} } \right)}}{8}$

Sum of roots \[{{\text{x}}_1}{\text{ + }}{{\text{x}}_2}{\text{ = }}\dfrac{{\left( {{\text{7 + }}\sqrt {97} } \right)}}{8}{\text{ + }}\dfrac{{\left( {{\text{7 - }}\sqrt {97} } \right)}}{8} = {\text{ }}\dfrac{{7 + \sqrt {97} + 7 - \sqrt {97} {\text{ }}}}{8}{\text{ }}\]

On solving

Sum of roots = $\left( {\dfrac{{14}}{8}} \right) = {\text{ }}\left( {\dfrac{7}{4}} \right)$--- (2)

Product of roots = \[{{\text{x}}_1}{\text{ }} \times {\text{ }}{{\text{x}}_2}{\text{ = }}\dfrac{{\left( {{\text{7 + }}\sqrt {97} } \right)}}{8}{\text{ }} \times {\text{ }}\dfrac{{\left( {{\text{7 - }}\sqrt {97} } \right)}}{8} = {\text{ }}\dfrac{{(7 + \sqrt {97} {\text{ )}} \times (7 - \sqrt {97} {\text{ ) }}}}{8}{\text{ }}\]

Using identity $\left( {{{\text{a}}^2}{\text{ - }}{{\text{b}}^2}} \right){\text{ = (a + b)(a - b)}}$

\[{{\text{x}}_1}{\text{ }} \times {\text{ }}{{\text{x}}_2}{\text{ = }}\dfrac{{(7 + \sqrt {97} {\text{ )}} \times (7 - \sqrt {97} {\text{ ) }}}}{{8 \times 8}}{\text{ = }}\dfrac{{(49 - 97)}}{{64}} = \dfrac{{ - 48}}{{{\text{ }}64}}\]

On reducing the fraction

Product of roots = \[{{\text{x}}_1}{\text{ }} \times {\text{ }}{{\text{x}}_2} = \dfrac{{ - 48}}{{{\text{ }}64}} = \dfrac{{ - 3}}{{{\text{ 4}}}}\] --- (3)

We know that , In general quadratic equation \[{\text{a}}{{\text{x}}^2}{\text{ + bx + c = 0}}\]

sum of roots equal to $\left( {\dfrac{{ - {\text{b}}}}{{\text{a}}}} \right)$ and product of roots equal to $\left( {\dfrac{{\text{c}}}{{\text{a}}}} \right)$

According to above results

In the given quadratic equation \[4{{\text{x}}^2} - 7x - 3\],

values of coefficients a = 4, b = -7, c = -3

On putting the values of coefficients

sum of roots = $\left( {\dfrac{{ - ( - 7)}}{4}} \right) = \dfrac{7}{4}$ --- (4)

and product of roots equal to $\left( {\dfrac{{ - 3}}{4}} \right)$--- (5)

According to equation 2 and 4, It has been proved that sum of zeros equal to $\left( {\dfrac{{ - {\text{b}}}}{{\text{a}}}} \right)$ which is a coefficient relation. Similarly by equation 3 and 5, It has been proved that product of zeros equal to $\left( {\dfrac{{\text{c}}}{{\text{a}}}} \right)$

Note- In these types of problems, we have to compare the given quadratic equation with the general quadratic equation and find the coefficient so that we can apply the sum of roots and product of roots formula. In order to find zeroes either use the Sridharacharya formula or factorise by the middle term split method.

Recently Updated Pages

How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE

Why Are Noble Gases NonReactive class 11 chemistry CBSE

Let X and Y be the sets of all positive divisors of class 11 maths CBSE

Let x and y be 2 real numbers which satisfy the equations class 11 maths CBSE

Let x 4log 2sqrt 9k 1 + 7 and y dfrac132log 2sqrt5 class 11 maths CBSE

Let x22ax+b20 and x22bx+a20 be two equations Then the class 11 maths CBSE

Trending doubts

Which are the Top 10 Largest Countries of the World?

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Guru Purnima speech in English in 100 words class 7 english CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Change the following sentences into negative and interrogative class 10 english CBSE

Difference Between Plant Cell and Animal Cell

Three liquids are given to you One is hydrochloric class 11 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE