Answer

Verified

372k+ views

**Hint:**We use both grouping method and vanishing method to solve the problem. We take common terms out to form the multiplied forms. Factorising a polynomial by grouping is to find the pairs which on taking their common divisor out, give the same remaining number. In the case of vanishing method, we use the value of $x$ which gives the polynomial value 0.

**Complete step by step solution:**

We apply the middle-term factoring or grouping to factorise the polynomial.

In case of ${{x}^{2}}-5x-6$, we break the middle term $-5x$ into two parts of $-6x$ and $x$.

So, ${{x}^{2}}-5x-6={{x}^{2}}-6x+x-6$. We have one condition to check if the grouping is possible or not. If we order the individual elements of the polynomial according to their power of variables, then the multiple of end terms will be equal to the multiple of middle terms.

Here multiplication for both cases gives $-6{{x}^{2}}$. The grouping will be done for ${{x}^{2}}-6x$ and $x-6$.

We try to take the common numbers out.

For ${{x}^{2}}-6x$, we take $x$ and get $x\left( x-6 \right)$.

For $x-6$, we take 1 and get $\left( x-6 \right)$.

The equation becomes ${{x}^{2}}-5x-6={{x}^{2}}-6x+x-6=x\left( x-6 \right)+\left( x-6 \right)$.

Both the terms have $\left( x-6 \right)$ in common. We take that term again and get

$\begin{align}

& {{x}^{2}}-5x-6 \\

& =x\left( x-6 \right)+\left( x-6 \right) \\

& =\left( x-6 \right)\left( x+1 \right) \\

\end{align}$

Therefore, $\left( x+1 \right)\left( x-6 \right)=0$ has multiplication of two polynomials giving a value of 0. This means at least one of them has to be 0.

So, values of x are $x=6,-1$.

We know for a general equation of quadratic $a{{x}^{2}}+bx+c=0$, the value of the roots of x will be $x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}$.

In the given equation we have ${{x}^{2}}-5x-6=0$. The values of a, b, c are $1,-5,-6$ respectively.

We put the values and get x as $x=\dfrac{-\left( -5 \right)\pm \sqrt{{{\left( -5 \right)}^{2}}-4\times 1\times \left( -6 \right)}}{2\times 1}=\dfrac{5\pm \sqrt{49}}{2}=\dfrac{5\pm 7}{2}=6,-1$.

**Note:**We find the value of x for which the function $f\left( x \right)={{x}^{2}}-5x-6$. We can see $f\left( 6 \right)={{6}^{2}}-5\times 6-6=36-30-6=0$. So, the root of the $f\left( x \right)={{x}^{2}}-5x-6$ will be the function $\left( x-6 \right)$. This means for $x=a$, if $f\left( a \right)=0$ then $\left( x-a \right)$ is a root of $f\left( x \right)$. We can also do the same process for $\left( x+1 \right)$.

Recently Updated Pages

The base of a right prism is a pentagon whose sides class 10 maths CBSE

A die is thrown Find the probability that the number class 10 maths CBSE

A mans age is six times the age of his son In six years class 10 maths CBSE

A started a business with Rs 21000 and is joined afterwards class 10 maths CBSE

Aasifbhai bought a refrigerator at Rs 10000 After some class 10 maths CBSE

Give a brief history of the mathematician Pythagoras class 10 maths CBSE

Trending doubts

Difference Between Plant Cell and Animal Cell

Give 10 examples for herbs , shrubs , climbers , creepers

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Name 10 Living and Non living things class 9 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

Select the word that is correctly spelled a Twelveth class 10 english CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE