Answer
Verified
388.2k+ views
Hint: The work done of the process is found by calculating the area under the curve. Redraw the diagram and extend lines to the X and Y axis from points A and B. Calculate the total area by dividing it into smaller areas. In this figure divide it into a triangular and rectangular area and then sum the values of the area. The total area will give the work done.
Formula used: \[Area{\text{ }}of{\text{ }}rectangle = {\text{ }}length{\text{ }}x{\text{ }}breadth\] ; \[Area{\text{ }}of{\text{ }}triangle{\text{ }} = \;\dfrac{1}{2}*{\text{ }}Base{\text{ * }}height\]
Complete step-by-step solution:
\[P - {\text{ }}Pressure\]
\[Pa - {\text{ }}Pascal{\text{ }}(Unit{\text{ }}of{\text{ }}pressure)\]
\[V - {\text{ }}Volume\]
\[cc - {\text{ }}cubic{\text{ }}centimeter{\text{ }}\left( {Unit{\text{ }}of{\text{ }}volume} \right)\]
The work done is calculated by summing the area under the line AB. So from the diagram, the sum of the area (area 0f the rectangle + area of the triangle) will give the work done for the process.
Given: Initial volume =\[10{\text{ }}cc\] ; Final volume = \[25{\text{ }}cc\]
Initial Pressure =\[10kPa\] ; Final pressure = \[30kPa\]
To find: work done
Area of the rectangle (from the diagram) = Length x breadth
Substituting the values, = \[\left( {30 - 10} \right){\text{* }}10\]
\[ = {\text{ }}20{\text{ * }}10\]
\[Area{\text{ }}of{\text{ }}rectangle\;\;\; = {\text{ }}200kPa.cc\]
Area of the triangle (from the diagram) = \[\;\dfrac{1}{2}{\text{* }}Base{\text{ * }}height\]
\[ = \;\dfrac{1}{2}*{\text{ }}10{\text{ * }}20\]
Simplifying, Area of triangle= \[100\] kPa.cc
The work done is the sum of the area,
Therefore, Work done= Area of rectangle + Area of triangle
Substituting the values, = \[200\] kPa.cc + \[100\] kPa.cc
Adding,= \[300\] kPa.cc
To convert cubic centimeter to cubic meter, multiply by \[{10^{ - 6}}\] (1 cubic centimeter= \[{10^{ - 6}}\] cubic meter)
Therefore, Work done = \[300{\text{ * }}{10^{ - 6}}\] kPa.m3
Since \[kPa = {\text{ }}1000\] Pa and multiplying, Work done= \[0.3\] Pa.m3
Since\[Pa.{m^3} = {\text{ }}J\] , Work done=\[0.3\]J (J- Joules)
Hence option (D) W= \[0.3\]J is the right answer.
Note: The energy that is utilized to move an object against force is called work. The work done by a gas depends on both the initial and final state of a gas. For a pressure-volume graph, the area under the curve gives the work done by the gas.
Formula used: \[Area{\text{ }}of{\text{ }}rectangle = {\text{ }}length{\text{ }}x{\text{ }}breadth\] ; \[Area{\text{ }}of{\text{ }}triangle{\text{ }} = \;\dfrac{1}{2}*{\text{ }}Base{\text{ * }}height\]
Complete step-by-step solution:
\[P - {\text{ }}Pressure\]
\[Pa - {\text{ }}Pascal{\text{ }}(Unit{\text{ }}of{\text{ }}pressure)\]
\[V - {\text{ }}Volume\]
\[cc - {\text{ }}cubic{\text{ }}centimeter{\text{ }}\left( {Unit{\text{ }}of{\text{ }}volume} \right)\]
The work done is calculated by summing the area under the line AB. So from the diagram, the sum of the area (area 0f the rectangle + area of the triangle) will give the work done for the process.
Given: Initial volume =\[10{\text{ }}cc\] ; Final volume = \[25{\text{ }}cc\]
Initial Pressure =\[10kPa\] ; Final pressure = \[30kPa\]
To find: work done
Area of the rectangle (from the diagram) = Length x breadth
Substituting the values, = \[\left( {30 - 10} \right){\text{* }}10\]
\[ = {\text{ }}20{\text{ * }}10\]
\[Area{\text{ }}of{\text{ }}rectangle\;\;\; = {\text{ }}200kPa.cc\]
Area of the triangle (from the diagram) = \[\;\dfrac{1}{2}{\text{* }}Base{\text{ * }}height\]
\[ = \;\dfrac{1}{2}*{\text{ }}10{\text{ * }}20\]
Simplifying, Area of triangle= \[100\] kPa.cc
The work done is the sum of the area,
Therefore, Work done= Area of rectangle + Area of triangle
Substituting the values, = \[200\] kPa.cc + \[100\] kPa.cc
Adding,= \[300\] kPa.cc
To convert cubic centimeter to cubic meter, multiply by \[{10^{ - 6}}\] (1 cubic centimeter= \[{10^{ - 6}}\] cubic meter)
Therefore, Work done = \[300{\text{ * }}{10^{ - 6}}\] kPa.m3
Since \[kPa = {\text{ }}1000\] Pa and multiplying, Work done= \[0.3\] Pa.m3
Since\[Pa.{m^3} = {\text{ }}J\] , Work done=\[0.3\]J (J- Joules)
Hence option (D) W= \[0.3\]J is the right answer.
Note: The energy that is utilized to move an object against force is called work. The work done by a gas depends on both the initial and final state of a gas. For a pressure-volume graph, the area under the curve gives the work done by the gas.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Sound waves travel faster in air than in water True class 12 physics CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE