Answer
Verified
494.1k+ views
Hint- Here, we will proceed by using the discriminant method for quadratic equations.
Given quadratic equation is $5{x^2} - kx + 1 = 0{\text{ }} \to {\text{(1)}}$
Since we know that for any general quadratic equation $a{x^2} + bx + c = 0{\text{ }} \to {\text{(2)}}$, the roots will be real only if the value of the discriminant is greater than or equal to zero.
On comparing equations (1) and (2), we get
For the given quadratic equation, $a = 5$, $b = - k$ and $c = 1$
Discriminant of any quadratic equation is given by $d = {b^2} - 4ac$
Using above formula, discriminant of the given quadratic equation is given by
\[
d = {\left( { - k} \right)^2} - 4 \times 5 \times 1 \\
\Rightarrow d = {k^2} - 20 \\
\]
Now for the given quadratic equation to have real roots, put $d \geqslant 0$
$ \Rightarrow d \geqslant 0 \Rightarrow {k^2} - 20 \geqslant 0 \Rightarrow {k^2} - {\left( {\sqrt {20} } \right)^2} \geqslant 0 \Rightarrow \left( {k - \sqrt {20} } \right)\left( {k + \sqrt {20} } \right) \geqslant 0$
Clearly for the above inequality to hold true either both the terms on the LHS of the inequality should be positive or both terms should be negative in order to have the product of these terms as positive (greater than or equal to zero)
i.e., either $\left( {k - \sqrt {20} } \right) \geqslant 0 \Rightarrow k \geqslant \sqrt {20} $and $\left( {k + \sqrt {20} } \right) \geqslant 0 \Rightarrow k \geqslant - \sqrt {20} $
or $\left( {k - \sqrt {20} } \right) \leqslant 0 \Rightarrow k \leqslant \sqrt {20} $ and $\left( {k + \sqrt {20} } \right) \leqslant 0 \Rightarrow k \leqslant - \sqrt {20} $
i.e., $k \geqslant \sqrt {20} $ or $k \leqslant - \sqrt {20} $
Since, in case of or, union is performed and in case of and, intersection is performed.
Therefore, The values of $k$ for which the given quadratic equation has real roots are
$k \geqslant \sqrt {20} $ or $k \leqslant - \sqrt {20} $
Note- In these types of problems, we have to compare the given quadratic equation with the general form of any quadratic equation and then in order to have real roots, put the discriminant is greater than or equal to zero.
Given quadratic equation is $5{x^2} - kx + 1 = 0{\text{ }} \to {\text{(1)}}$
Since we know that for any general quadratic equation $a{x^2} + bx + c = 0{\text{ }} \to {\text{(2)}}$, the roots will be real only if the value of the discriminant is greater than or equal to zero.
On comparing equations (1) and (2), we get
For the given quadratic equation, $a = 5$, $b = - k$ and $c = 1$
Discriminant of any quadratic equation is given by $d = {b^2} - 4ac$
Using above formula, discriminant of the given quadratic equation is given by
\[
d = {\left( { - k} \right)^2} - 4 \times 5 \times 1 \\
\Rightarrow d = {k^2} - 20 \\
\]
Now for the given quadratic equation to have real roots, put $d \geqslant 0$
$ \Rightarrow d \geqslant 0 \Rightarrow {k^2} - 20 \geqslant 0 \Rightarrow {k^2} - {\left( {\sqrt {20} } \right)^2} \geqslant 0 \Rightarrow \left( {k - \sqrt {20} } \right)\left( {k + \sqrt {20} } \right) \geqslant 0$
Clearly for the above inequality to hold true either both the terms on the LHS of the inequality should be positive or both terms should be negative in order to have the product of these terms as positive (greater than or equal to zero)
i.e., either $\left( {k - \sqrt {20} } \right) \geqslant 0 \Rightarrow k \geqslant \sqrt {20} $and $\left( {k + \sqrt {20} } \right) \geqslant 0 \Rightarrow k \geqslant - \sqrt {20} $
or $\left( {k - \sqrt {20} } \right) \leqslant 0 \Rightarrow k \leqslant \sqrt {20} $ and $\left( {k + \sqrt {20} } \right) \leqslant 0 \Rightarrow k \leqslant - \sqrt {20} $
i.e., $k \geqslant \sqrt {20} $ or $k \leqslant - \sqrt {20} $
Since, in case of or, union is performed and in case of and, intersection is performed.
Therefore, The values of $k$ for which the given quadratic equation has real roots are
$k \geqslant \sqrt {20} $ or $k \leqslant - \sqrt {20} $
Note- In these types of problems, we have to compare the given quadratic equation with the general form of any quadratic equation and then in order to have real roots, put the discriminant is greater than or equal to zero.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
A rainbow has circular shape because A The earth is class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE