
Find the value of\[\sin {{120}^{\circ }}\].
A) \[\dfrac{\sqrt{3}}{2}\]
B) \[-\dfrac{\sqrt{3}}{2}\]
C) \[\dfrac{1}{2}\]
D) \[-\dfrac{1}{2}\]
Answer
605.4k+ views
Hint: Draw a unit circle and chart out the trigonometric values on each quadrant of the circle. Find the value of \[\sin {{120}^{\circ }}\] or the value of \[\sin {{120}^{\circ }}\]can be taken from the trigonometric table. Find either sine function or cosine function.
Complete step-by-step answer:
By using a unit circle we can find the value of \[\sin {{120}^{\circ }}\]. Now let us draw a cartesian plane with \[x=\cos \theta \] and \[y=\sin \theta \].
Let us draw the trigonometric table as well:
Now let us mark their values in the unit circle.
Here, \[x=\cos \theta ,y=\sin \theta \].
Eg: -\[\left( \cos {{30}^{\circ }},\sin {{30}^{\circ }} \right)=\left( x,y \right)\]
\[\left( x,y \right)=\left( \dfrac{\sqrt{3}}{2},\dfrac{1}{2} \right)\].
In the first quadrant, the values of \[\cos \theta \] and \[\sin \theta \] are positive.
In the second quadrant, the value of \[\cos \theta \] is negative and \[\sin \theta \] is positive.
In the third quadrant, both are negative.
In the fourth quadrant, \[\cos \theta \] is positive and \[\sin \theta \] is negative.
By looking into the figure, you can find that \[\sin 60=\sin 120\].
i.e. \[\sin 60=\sin 120=\dfrac{\sqrt{3}}{2}\]
Or if we are directly taking value from the trigonometric table, we need to find the value of \[\sin {{120}^{\circ }}\] by using other angles of sin functions such as \[{{60}^{\circ }}\] and \[\sin {{180}^{\circ }}\].
We know that \[{{180}^{\circ }}-{{60}^{\circ }}={{120}^{\circ }}\].
We also know that the trigonometric identity:
\[\sin \left( 180-\theta \right)=\sin \theta \].
Put, \[\theta ={{120}^{\circ }}\].
\[\begin{align}
& \Rightarrow \sin \left( 180-120 \right)=\sin {{120}^{\circ }} \\
& \Rightarrow \sin {{60}^{\circ }}=\sin {{120}^{\circ }}=\dfrac{\sqrt{3}}{2} \\
\end{align}\]
From the trigonometric table, find the value of \[\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2}\].
\[\therefore \]Value of \[\sin {{120}^{\circ }}=\dfrac{\sqrt{3}}{2}\]
\[\therefore \]Option (a) is the correct answer.
Note:
We can also find the value of \[\sin {{120}^{\circ }}\] by using cosine function.
Using the trigonometry formula,
\[\sin \left( 90+\theta \right)=\cos \theta \]
Thus to find the values of \[\sin {{120}^{\circ }}\], put \[\theta ={{30}^{\circ }}\]
as, \[{{90}^{\circ }}+{{30}^{\circ }}={{120}^{\circ }}\]
\[\begin{align}
& \Rightarrow \sin \left( 90+30 \right)=\cos 30 \\
& \sin {{120}^{\circ }}=\cos {{30}^{\circ }} \\
\end{align}\]
From trigonometric table, value of \[\cos 30=\dfrac{\sqrt{3}}{2}\]
\[\therefore \sin {{120}^{\circ }}=\dfrac{\sqrt{3}}{2}\].
Complete step-by-step answer:
By using a unit circle we can find the value of \[\sin {{120}^{\circ }}\]. Now let us draw a cartesian plane with \[x=\cos \theta \] and \[y=\sin \theta \].
Let us draw the trigonometric table as well:
| sin | cos | tan | cot | sec | Cosec | |
| 0 | 0 | 1 | 0 | N.A | 1 | N.A |
| 30 | \[\dfrac{1}{2}\] | \[\dfrac{\sqrt{3}}{2}\] | \[\dfrac{1}{\sqrt{3}}\] | \[\sqrt{3}\] | \[\dfrac{2\sqrt{3}}{3}\] | 2 |
| 45 | \[\dfrac{1}{\sqrt{2}}\] | \[\dfrac{1}{\sqrt{2}}\] | 1 | 1 | \[\sqrt{2}\] | \[\sqrt{2}\] |
| 60 | \[\dfrac{\sqrt{3}}{2}\] | \[\dfrac{1}{2}\] | \[\sqrt{3}\] | \[\dfrac{\sqrt{3}}{3}\] | 2 | \[\dfrac{2\sqrt{3}}{3}\] |
| 90 | 1 | 0 | N.A | 0 | N.A | 1 |
Now let us mark their values in the unit circle.
Here, \[x=\cos \theta ,y=\sin \theta \].
Eg: -\[\left( \cos {{30}^{\circ }},\sin {{30}^{\circ }} \right)=\left( x,y \right)\]
\[\left( x,y \right)=\left( \dfrac{\sqrt{3}}{2},\dfrac{1}{2} \right)\].
In the first quadrant, the values of \[\cos \theta \] and \[\sin \theta \] are positive.
In the second quadrant, the value of \[\cos \theta \] is negative and \[\sin \theta \] is positive.
In the third quadrant, both are negative.
In the fourth quadrant, \[\cos \theta \] is positive and \[\sin \theta \] is negative.
By looking into the figure, you can find that \[\sin 60=\sin 120\].
i.e. \[\sin 60=\sin 120=\dfrac{\sqrt{3}}{2}\]
Or if we are directly taking value from the trigonometric table, we need to find the value of \[\sin {{120}^{\circ }}\] by using other angles of sin functions such as \[{{60}^{\circ }}\] and \[\sin {{180}^{\circ }}\].
We know that \[{{180}^{\circ }}-{{60}^{\circ }}={{120}^{\circ }}\].
We also know that the trigonometric identity:
\[\sin \left( 180-\theta \right)=\sin \theta \].
Put, \[\theta ={{120}^{\circ }}\].
\[\begin{align}
& \Rightarrow \sin \left( 180-120 \right)=\sin {{120}^{\circ }} \\
& \Rightarrow \sin {{60}^{\circ }}=\sin {{120}^{\circ }}=\dfrac{\sqrt{3}}{2} \\
\end{align}\]
From the trigonometric table, find the value of \[\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2}\].
\[\therefore \]Value of \[\sin {{120}^{\circ }}=\dfrac{\sqrt{3}}{2}\]
\[\therefore \]Option (a) is the correct answer.
Note:
We can also find the value of \[\sin {{120}^{\circ }}\] by using cosine function.
Using the trigonometry formula,
\[\sin \left( 90+\theta \right)=\cos \theta \]
Thus to find the values of \[\sin {{120}^{\circ }}\], put \[\theta ={{30}^{\circ }}\]
as, \[{{90}^{\circ }}+{{30}^{\circ }}={{120}^{\circ }}\]
\[\begin{align}
& \Rightarrow \sin \left( 90+30 \right)=\cos 30 \\
& \sin {{120}^{\circ }}=\cos {{30}^{\circ }} \\
\end{align}\]
From trigonometric table, value of \[\cos 30=\dfrac{\sqrt{3}}{2}\]
\[\therefore \sin {{120}^{\circ }}=\dfrac{\sqrt{3}}{2}\].
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

