# Find the value of\[\sin {{120}^{\circ }}\].

A) \[\dfrac{\sqrt{3}}{2}\]

B) \[-\dfrac{\sqrt{3}}{2}\]

C) \[\dfrac{1}{2}\]

D) \[-\dfrac{1}{2}\]

Answer

Verified

361.2k+ views

Hint: Draw a unit circle and chart out the trigonometric values on each quadrant of the circle. Find the value of \[\sin {{120}^{\circ }}\] or the value of \[\sin {{120}^{\circ }}\]can be taken from the trigonometric table. Find either sine function or cosine function.

Complete step-by-step answer:

By using a unit circle we can find the value of \[\sin {{120}^{\circ }}\]. Now let us draw a cartesian plane with \[x=\cos \theta \] and \[y=\sin \theta \].

Let us draw the trigonometric table as well:

Now let us mark their values in the unit circle.

Here, \[x=\cos \theta ,y=\sin \theta \].

Eg: -\[\left( \cos {{30}^{\circ }},\sin {{30}^{\circ }} \right)=\left( x,y \right)\]

\[\left( x,y \right)=\left( \dfrac{\sqrt{3}}{2},\dfrac{1}{2} \right)\].

In the first quadrant, the values of \[\cos \theta \] and \[\sin \theta \] are positive.

In the second quadrant, the value of \[\cos \theta \] is negative and \[\sin \theta \] is positive.

In the third quadrant, both are negative.

In the fourth quadrant, \[\cos \theta \] is positive and \[\sin \theta \] is negative.

By looking into the figure, you can find that \[\sin 60=\sin 120\].

i.e. \[\sin 60=\sin 120=\dfrac{\sqrt{3}}{2}\]

Or if we are directly taking value from the trigonometric table, we need to find the value of \[\sin {{120}^{\circ }}\] by using other angles of sin functions such as \[{{60}^{\circ }}\] and \[\sin {{180}^{\circ }}\].

We know that \[{{180}^{\circ }}-{{60}^{\circ }}={{120}^{\circ }}\].

We also know that the trigonometric identity:

\[\sin \left( 180-\theta \right)=\sin \theta \].

Put, \[\theta ={{120}^{\circ }}\].

\[\begin{align}

& \Rightarrow \sin \left( 180-120 \right)=\sin {{120}^{\circ }} \\

& \Rightarrow \sin {{60}^{\circ }}=\sin {{120}^{\circ }}=\dfrac{\sqrt{3}}{2} \\

\end{align}\]

From the trigonometric table, find the value of \[\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2}\].

\[\therefore \]Value of \[\sin {{120}^{\circ }}=\dfrac{\sqrt{3}}{2}\]

\[\therefore \]Option (a) is the correct answer.

Note:

We can also find the value of \[\sin {{120}^{\circ }}\] by using cosine function.

Using the trigonometry formula,

\[\sin \left( 90+\theta \right)=\cos \theta \]

Thus to find the values of \[\sin {{120}^{\circ }}\], put \[\theta ={{30}^{\circ }}\]

as, \[{{90}^{\circ }}+{{30}^{\circ }}={{120}^{\circ }}\]

\[\begin{align}

& \Rightarrow \sin \left( 90+30 \right)=\cos 30 \\

& \sin {{120}^{\circ }}=\cos {{30}^{\circ }} \\

\end{align}\]

From trigonometric table, value of \[\cos 30=\dfrac{\sqrt{3}}{2}\]

\[\therefore \sin {{120}^{\circ }}=\dfrac{\sqrt{3}}{2}\].

Complete step-by-step answer:

By using a unit circle we can find the value of \[\sin {{120}^{\circ }}\]. Now let us draw a cartesian plane with \[x=\cos \theta \] and \[y=\sin \theta \].

Let us draw the trigonometric table as well:

sin | cos | tan | cot | sec | Cosec | |

0 | 0 | 1 | 0 | N.A | 1 | N.A |

30 | \[\dfrac{1}{2}\] | \[\dfrac{\sqrt{3}}{2}\] | \[\dfrac{1}{\sqrt{3}}\] | \[\sqrt{3}\] | \[\dfrac{2\sqrt{3}}{3}\] | 2 |

45 | \[\dfrac{1}{\sqrt{2}}\] | \[\dfrac{1}{\sqrt{2}}\] | 1 | 1 | \[\sqrt{2}\] | \[\sqrt{2}\] |

60 | \[\dfrac{\sqrt{3}}{2}\] | \[\dfrac{1}{2}\] | \[\sqrt{3}\] | \[\dfrac{\sqrt{3}}{3}\] | 2 | \[\dfrac{2\sqrt{3}}{3}\] |

90 | 1 | 0 | N.A | 0 | N.A | 1 |

Now let us mark their values in the unit circle.

Here, \[x=\cos \theta ,y=\sin \theta \].

Eg: -\[\left( \cos {{30}^{\circ }},\sin {{30}^{\circ }} \right)=\left( x,y \right)\]

\[\left( x,y \right)=\left( \dfrac{\sqrt{3}}{2},\dfrac{1}{2} \right)\].

In the first quadrant, the values of \[\cos \theta \] and \[\sin \theta \] are positive.

In the second quadrant, the value of \[\cos \theta \] is negative and \[\sin \theta \] is positive.

In the third quadrant, both are negative.

In the fourth quadrant, \[\cos \theta \] is positive and \[\sin \theta \] is negative.

By looking into the figure, you can find that \[\sin 60=\sin 120\].

i.e. \[\sin 60=\sin 120=\dfrac{\sqrt{3}}{2}\]

Or if we are directly taking value from the trigonometric table, we need to find the value of \[\sin {{120}^{\circ }}\] by using other angles of sin functions such as \[{{60}^{\circ }}\] and \[\sin {{180}^{\circ }}\].

We know that \[{{180}^{\circ }}-{{60}^{\circ }}={{120}^{\circ }}\].

We also know that the trigonometric identity:

\[\sin \left( 180-\theta \right)=\sin \theta \].

Put, \[\theta ={{120}^{\circ }}\].

\[\begin{align}

& \Rightarrow \sin \left( 180-120 \right)=\sin {{120}^{\circ }} \\

& \Rightarrow \sin {{60}^{\circ }}=\sin {{120}^{\circ }}=\dfrac{\sqrt{3}}{2} \\

\end{align}\]

From the trigonometric table, find the value of \[\sin {{60}^{\circ }}=\dfrac{\sqrt{3}}{2}\].

\[\therefore \]Value of \[\sin {{120}^{\circ }}=\dfrac{\sqrt{3}}{2}\]

\[\therefore \]Option (a) is the correct answer.

Note:

We can also find the value of \[\sin {{120}^{\circ }}\] by using cosine function.

Using the trigonometry formula,

\[\sin \left( 90+\theta \right)=\cos \theta \]

Thus to find the values of \[\sin {{120}^{\circ }}\], put \[\theta ={{30}^{\circ }}\]

as, \[{{90}^{\circ }}+{{30}^{\circ }}={{120}^{\circ }}\]

\[\begin{align}

& \Rightarrow \sin \left( 90+30 \right)=\cos 30 \\

& \sin {{120}^{\circ }}=\cos {{30}^{\circ }} \\

\end{align}\]

From trigonometric table, value of \[\cos 30=\dfrac{\sqrt{3}}{2}\]

\[\therefore \sin {{120}^{\circ }}=\dfrac{\sqrt{3}}{2}\].

Last updated date: 25th Sep 2023

â€¢

Total views: 361.2k

â€¢

Views today: 3.61k

Recently Updated Pages

What do you mean by public facilities

Paragraph on Friendship

Slogan on Noise Pollution

Disadvantages of Advertising

Prepare a Pocket Guide on First Aid for your School

10 Slogans on Save the Tiger

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

What is the IUPAC name of CH3CH CH COOH A 2Butenoic class 11 chemistry CBSE

Drive an expression for the electric field due to an class 12 physics CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

The dimensions of potential gradient are A MLT 3A 1 class 11 physics CBSE

Define electric potential and write down its dimen class 9 physics CBSE

Why is the electric field perpendicular to the equipotential class 12 physics CBSE