
Find the value of $x$in the following:
$\tan x = \sin 45^\circ \cos 45^\circ + \sin 30^\circ $
Answer
609.9k+ views
Hint: - Use $\sin 45^\circ = \cos 45^\circ = \dfrac{1}{{\sqrt 2 }}$
Given equation is
$\tan x = \sin 45^\circ \cos 45^\circ + \sin 30^\circ $
As we know
$\sin 45^\circ = \cos 45^\circ = \dfrac{1}{{\sqrt 2 }}$, and $\sin 30^\circ = \dfrac{1}{2}$
Substitute these values in the given equation
$
\Rightarrow \tan x = \sin 45^\circ \cos 45^\circ + \sin 30^\circ \\
\Rightarrow \tan x = \left( {\dfrac{1}{{\sqrt 2 }}} \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right) + \dfrac{1}{2} \\
$
As we have ${\text{ }}\left( {\sqrt 2 \times \sqrt 2 = 2} \right)$
$
\Rightarrow \tan x = \left( {\dfrac{1}{2}} \right) + \left( {\dfrac{1}{2}} \right) \\
\Rightarrow \tan x = \dfrac{{1 + 1}}{2} = \dfrac{2}{2} = 1 \\
$
Now we know $\tan 45^\circ = 1$
$
\Rightarrow \tan x = 1 = \tan 45^\circ \\
\Rightarrow x = 45^\circ \\
$
So, this is the required answer.
Note: -In such types of questions the key point we have to remember is that always remember all standard angle values of ${\text{sin, cosine and tan}}$, then simplify the given equation using these values we will get the required answer.
Given equation is
$\tan x = \sin 45^\circ \cos 45^\circ + \sin 30^\circ $
As we know
$\sin 45^\circ = \cos 45^\circ = \dfrac{1}{{\sqrt 2 }}$, and $\sin 30^\circ = \dfrac{1}{2}$
Substitute these values in the given equation
$
\Rightarrow \tan x = \sin 45^\circ \cos 45^\circ + \sin 30^\circ \\
\Rightarrow \tan x = \left( {\dfrac{1}{{\sqrt 2 }}} \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right) + \dfrac{1}{2} \\
$
As we have ${\text{ }}\left( {\sqrt 2 \times \sqrt 2 = 2} \right)$
$
\Rightarrow \tan x = \left( {\dfrac{1}{2}} \right) + \left( {\dfrac{1}{2}} \right) \\
\Rightarrow \tan x = \dfrac{{1 + 1}}{2} = \dfrac{2}{2} = 1 \\
$
Now we know $\tan 45^\circ = 1$
$
\Rightarrow \tan x = 1 = \tan 45^\circ \\
\Rightarrow x = 45^\circ \\
$
So, this is the required answer.
Note: -In such types of questions the key point we have to remember is that always remember all standard angle values of ${\text{sin, cosine and tan}}$, then simplify the given equation using these values we will get the required answer.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
Which of the following does not have a fundamental class 10 physics CBSE

10 examples of evaporation in daily life with explanations

State and prove the Pythagoras theorem-class-10-maths-CBSE

State BPT theorem and prove it class 10 maths CBSE

What is UltraEdge (Snickometer) used for in cricket?

What are the public facilities provided by the government? Also explain each facility

