Find the value of \[x\]in the following proportion \[5:15 = 4:x\]
Answer
Verified
480.3k+ views
Hint: A proportion is a mathematical comparison between two numbers. Often, these numbers can represent a comparison between things or people. For example, say you walked into a room full of people. You want to know how many boys there are in comparison to how many girls there are in the room. You would write that comparison in the form of a proportion.
A ratio is a way to compare two quantities by using division as in miles per hour.
A proportion on the other hand is an equation that says that two ratio are equivalent
If one number in a proportion is unknown you can find that number by solving the proportion
It is formulate as:
\[a:b::c:d\]
\[ \Rightarrow \dfrac{a}{b} = \dfrac{c}{d}\]
\[ \Rightarrow a \times d = b \times c\]
Therefore,
Complete step by step answer:
Given
\[5:15 = 4:x......(1)\]
We need to find the value of \[x\]in proportion.
We know that if two number are in proportion i.e \[a:b::c:d\] or \[a:b = c:d,\]then we can write them as\[\dfrac{a}{b} = \dfrac{c}{d}\]
Hence \[(1) \Rightarrow \dfrac{5}{{15}} = \dfrac{4}{x}\]
Cross multiplying, we get
\[5 \times x = 15 \times 4\]
\[ \Rightarrow x = \dfrac{{15 \times 4}}{5}\]
As 5 was in multiplication LHS it will be in division on RHS
\[ \Rightarrow x = 3 \times 4\]
\[ \Rightarrow x = 12\]
Hence the value of \[x\] is 12.
Note: For four numbers a, b, c, d if \[a:b = c:d\] then \[b:a = d:c,\] it is known as invert and properly
For four numbers a ,b, c, d if \[a:b = c:d\] then \[a:c = b:d\]if the second and third terms interchange their places, it is known as alternator property.
We can also use component do and dividend property to simply the proportion problems.
A ratio is a way to compare two quantities by using division as in miles per hour.
A proportion on the other hand is an equation that says that two ratio are equivalent
If one number in a proportion is unknown you can find that number by solving the proportion
It is formulate as:
\[a:b::c:d\]
\[ \Rightarrow \dfrac{a}{b} = \dfrac{c}{d}\]
\[ \Rightarrow a \times d = b \times c\]
Therefore,
Complete step by step answer:
Given
\[5:15 = 4:x......(1)\]
We need to find the value of \[x\]in proportion.
We know that if two number are in proportion i.e \[a:b::c:d\] or \[a:b = c:d,\]then we can write them as\[\dfrac{a}{b} = \dfrac{c}{d}\]
Hence \[(1) \Rightarrow \dfrac{5}{{15}} = \dfrac{4}{x}\]
Cross multiplying, we get
\[5 \times x = 15 \times 4\]
\[ \Rightarrow x = \dfrac{{15 \times 4}}{5}\]
As 5 was in multiplication LHS it will be in division on RHS
\[ \Rightarrow x = 3 \times 4\]
\[ \Rightarrow x = 12\]
Hence the value of \[x\] is 12.
Note: For four numbers a, b, c, d if \[a:b = c:d\] then \[b:a = d:c,\] it is known as invert and properly
For four numbers a ,b, c, d if \[a:b = c:d\] then \[a:c = b:d\]if the second and third terms interchange their places, it is known as alternator property.
We can also use component do and dividend property to simply the proportion problems.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
What is Commercial Farming ? What are its types ? Explain them with Examples
Imagine that you have the opportunity to interview class 10 english CBSE
Find the area of the minor segment of a circle of radius class 10 maths CBSE
Fill the blanks with proper collective nouns 1 A of class 10 english CBSE
The allots symbols to the recognized political parties class 10 social science CBSE
Find the mode of the data using an empirical formula class 10 maths CBSE