
Find the value of $ x $ in the given figure given below:
A. $ {118^ \circ } $
B. $ {20^ \circ } $
C. $ {72^ \circ } $
D. $ {223^ \circ } $
Answer
548.7k+ views
Hint: In this question we have to find the value of $ x $ . To find the value of $ x $ we will use the sum of all interior angles of a triangle property and straight angle or straight-line definition. By using these properties, we can find the value of $ x $ .
The sum of all interior angles of the triangle is $ {180^ \circ } $ .
The angle of the straight line is $ {180^ \circ } $ .
Complete step-by-step answer:
Consider the given figure. Draw a straight line from a point D which bisects the line $ AB $ . Let name the point as E which bisects the line $ AB $ .
Using the property “the sum of all interior angles of a triangle is $ {180^ \circ } $ ”
Now consider the $ \vartriangle ACE $
The sum of all interior angles is,
$ {48^ \circ } + {30^ \circ } + a = {180^ \circ } $
$ \Rightarrow {78^ \circ } + a = {180^ \circ } $
$ \Rightarrow a = {180^ \circ } - {78^ \circ } $
$ \Rightarrow a = {102^ \circ } $
Therefore the $ \left| \!{\underline {\,
E \,}} \right. $ in the $ \vartriangle ACE $ is $ {102^ \circ } $ .
Now consider the straight line $ AB $ where E is the midpoint of $ AB $ . We know that the angle of the straight line is $ {180^ \circ } $ . We know value of the $ \left| \!{\underline {\,
{AEC} \,}} \right. $ is $ {102^ \circ } $ .
Therefore, we have $ \left| \!{\underline {\,
E \,}} \right. = \left| \!{\underline {\,
{AEC} \,}} \right. + \left| \!{\underline {\,
{CEB} \,}} \right. $
$ \Rightarrow \left| \!{\underline {\,
E \,}} \right. = {102^ \circ } + y $
$
\Rightarrow {180^ \circ } = {102^ \circ } + y \\
\Rightarrow y = {180^ \circ } - {102^ \circ } \;
$
$ \Rightarrow y = {78^ \circ } $
Now let us consider the $ \vartriangle DEB $
The sum of all interior angles is,
$ {40^ \circ } + {78^ \circ } + z = {180^ \circ } $
$ \Rightarrow {118^ \circ } + z = {180^ \circ } $
$ \Rightarrow z = {180^ \circ } - {118^ \circ } $
$ \Rightarrow z = {62^ \circ } $
Therefore $ \left| \!{\underline {\,
{EDB} \,}} \right. $ IS $ {62^ \circ } $ .
Now consider the straight line $ EC $ where D is the midpoint of $ EC $ . We know that the angle of the straight line is $ {180^ \circ } $ . We know value of the $ \left| \!{\underline {\,
{DEB} \,}} \right. $ is $ {62^ \circ } $ .
Therefore, we have $ \left| \!{\underline {\,
D \,}} \right. = \left| \!{\underline {\,
{EDB} \,}} \right. + \left| \!{\underline {\,
{CDB} \,}} \right. $
$ \Rightarrow \left| \!{\underline {\,
D \,}} \right. = {62^ \circ } + b $
$
\Rightarrow {180^ \circ } = {62^ \circ } + b \\
\Rightarrow b = {180^ \circ } - {62^ \circ } \;
$
$ \Rightarrow b = {118^ \circ } $
Therefore, the value of $ x $ is $ {118^ \circ } $ .
So, the correct answer is “Option A”.
Note: Candidates should be careful in determining the angles which are unknown. Here use these properties. The sum of all interior angles of the triangle is $ {180^ \circ } $ and the angle of the straight line is $ {180^ \circ } $ . Or we can use another property: the sum of interior angles is equal to the opposite exterior angle.
The sum of all interior angles of the triangle is $ {180^ \circ } $ .
The angle of the straight line is $ {180^ \circ } $ .
Complete step-by-step answer:
Consider the given figure. Draw a straight line from a point D which bisects the line $ AB $ . Let name the point as E which bisects the line $ AB $ .
Using the property “the sum of all interior angles of a triangle is $ {180^ \circ } $ ”
Now consider the $ \vartriangle ACE $
The sum of all interior angles is,
$ {48^ \circ } + {30^ \circ } + a = {180^ \circ } $
$ \Rightarrow {78^ \circ } + a = {180^ \circ } $
$ \Rightarrow a = {180^ \circ } - {78^ \circ } $
$ \Rightarrow a = {102^ \circ } $
Therefore the $ \left| \!{\underline {\,
E \,}} \right. $ in the $ \vartriangle ACE $ is $ {102^ \circ } $ .
Now consider the straight line $ AB $ where E is the midpoint of $ AB $ . We know that the angle of the straight line is $ {180^ \circ } $ . We know value of the $ \left| \!{\underline {\,
{AEC} \,}} \right. $ is $ {102^ \circ } $ .
Therefore, we have $ \left| \!{\underline {\,
E \,}} \right. = \left| \!{\underline {\,
{AEC} \,}} \right. + \left| \!{\underline {\,
{CEB} \,}} \right. $
$ \Rightarrow \left| \!{\underline {\,
E \,}} \right. = {102^ \circ } + y $
$
\Rightarrow {180^ \circ } = {102^ \circ } + y \\
\Rightarrow y = {180^ \circ } - {102^ \circ } \;
$
$ \Rightarrow y = {78^ \circ } $
Now let us consider the $ \vartriangle DEB $
The sum of all interior angles is,
$ {40^ \circ } + {78^ \circ } + z = {180^ \circ } $
$ \Rightarrow {118^ \circ } + z = {180^ \circ } $
$ \Rightarrow z = {180^ \circ } - {118^ \circ } $
$ \Rightarrow z = {62^ \circ } $
Therefore $ \left| \!{\underline {\,
{EDB} \,}} \right. $ IS $ {62^ \circ } $ .
Now consider the straight line $ EC $ where D is the midpoint of $ EC $ . We know that the angle of the straight line is $ {180^ \circ } $ . We know value of the $ \left| \!{\underline {\,
{DEB} \,}} \right. $ is $ {62^ \circ } $ .
Therefore, we have $ \left| \!{\underline {\,
D \,}} \right. = \left| \!{\underline {\,
{EDB} \,}} \right. + \left| \!{\underline {\,
{CDB} \,}} \right. $
$ \Rightarrow \left| \!{\underline {\,
D \,}} \right. = {62^ \circ } + b $
$
\Rightarrow {180^ \circ } = {62^ \circ } + b \\
\Rightarrow b = {180^ \circ } - {62^ \circ } \;
$
$ \Rightarrow b = {118^ \circ } $
Therefore, the value of $ x $ is $ {118^ \circ } $ .
So, the correct answer is “Option A”.
Note: Candidates should be careful in determining the angles which are unknown. Here use these properties. The sum of all interior angles of the triangle is $ {180^ \circ } $ and the angle of the straight line is $ {180^ \circ } $ . Or we can use another property: the sum of interior angles is equal to the opposite exterior angle.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the full form of pH?

