Find the value of x, if \[\tan 3x=\sin 45.\cos 45+\sin 30\].
Answer
270.2k+ views
Hint: Form the table of trigonometric values with angles such as \[{{0}^{\circ }},{{30}^{\circ }},{{45}^{\circ }},{{60}^{\circ }},{{90}^{\circ }}\]and with trigonometric function sine, cosine, tangent. Find the value of trigonometric functions from the question and substitute to find the required answer.
Complete step-by-step answer:
Given, \[\tan 3x=\sin 45.\cos 45+\sin 30\].
We can find the values of RHS using basic trigonometric formulas.
We can find it by creating a trigonometric table with the required angles such as \[{{0}^{\circ }},{{30}^{\circ }},{{45}^{\circ }},{{60}^{\circ }}\]and \[{{90}^{\circ }}\]. With 6 trigonometric functions such as sine, cosine, tangent, cosecant, secant and cotangent.
We can draw the table.
Now considering the RHS = \[\sin 45.\cos 45+\sin 30\].
From the above table we can find the values of sin45, cos45 and sin30.
Value of \[\sin 45=\dfrac{1}{\sqrt{2}}\].
Value of \[\cos 45=\dfrac{1}{\sqrt{2}}\].
Value of \[\sin 30=\dfrac{1}{2}\].
Substituting the values in RHS we get,
\[\begin{align}
& RHS=\sin 45.\cos 45+\sin 30 \\
& =\dfrac{1}{\sqrt{2}}\times \dfrac{1}{\sqrt{2}}+\dfrac{1}{2}=\dfrac{1}{2}+\dfrac{1}{2}=\dfrac{2}{2}=1 \\
\end{align}\]
Given, \[LHS=\tan 3x\], putting the value of RHS, we get,
\[\begin{align}
& \tan 3x=1 \\
& \Rightarrow 3x{{\tan }^{-1}}\left( 1 \right) \\
\end{align}\]
From the table, \[\tan 45=1\].
Taking the \[{{\tan }^{-1}}\left( 1 \right)\]we get \[{{45}^{\circ }}\].
\[\begin{align}
& \therefore 3x=45 \\
& \Rightarrow x=\dfrac{45}{3}={{15}^{\circ }} \\
\end{align}\]
Therefore, we get the values of x as \[{{15}^{\circ }}\].
Note:
We got \[{{\tan }^{-1}}\left( 1 \right)={{45}^{\circ }}\].
We know \[{{\tan }^{-1}}\theta =\cot \theta \]i.e. \[\dfrac{1}{\tan \theta }=\cot \theta \].
From the table of the trigonometric functions. Or try to remember the first 3 functions \[\sin \theta ,\cos \theta \] and \[\tan \theta \]. The other 3 functions can be found taking the reverse of \[\sin \theta \] (to get \[\cos ec\theta \]), \[\cos \theta \] (to get \[\sec \theta \]) and \[\tan \theta \] (to get \[\cot \theta \]).
Complete step-by-step answer:
Given, \[\tan 3x=\sin 45.\cos 45+\sin 30\].
We can find the values of RHS using basic trigonometric formulas.
We can find it by creating a trigonometric table with the required angles such as \[{{0}^{\circ }},{{30}^{\circ }},{{45}^{\circ }},{{60}^{\circ }}\]and \[{{90}^{\circ }}\]. With 6 trigonometric functions such as sine, cosine, tangent, cosecant, secant and cotangent.
We can draw the table.

Now considering the RHS = \[\sin 45.\cos 45+\sin 30\].
From the above table we can find the values of sin45, cos45 and sin30.
Value of \[\sin 45=\dfrac{1}{\sqrt{2}}\].
Value of \[\cos 45=\dfrac{1}{\sqrt{2}}\].
Value of \[\sin 30=\dfrac{1}{2}\].
Substituting the values in RHS we get,
\[\begin{align}
& RHS=\sin 45.\cos 45+\sin 30 \\
& =\dfrac{1}{\sqrt{2}}\times \dfrac{1}{\sqrt{2}}+\dfrac{1}{2}=\dfrac{1}{2}+\dfrac{1}{2}=\dfrac{2}{2}=1 \\
\end{align}\]
Given, \[LHS=\tan 3x\], putting the value of RHS, we get,
\[\begin{align}
& \tan 3x=1 \\
& \Rightarrow 3x{{\tan }^{-1}}\left( 1 \right) \\
\end{align}\]
From the table, \[\tan 45=1\].
Taking the \[{{\tan }^{-1}}\left( 1 \right)\]we get \[{{45}^{\circ }}\].
\[\begin{align}
& \therefore 3x=45 \\
& \Rightarrow x=\dfrac{45}{3}={{15}^{\circ }} \\
\end{align}\]
Therefore, we get the values of x as \[{{15}^{\circ }}\].
Note:
We got \[{{\tan }^{-1}}\left( 1 \right)={{45}^{\circ }}\].
We know \[{{\tan }^{-1}}\theta =\cot \theta \]i.e. \[\dfrac{1}{\tan \theta }=\cot \theta \].
From the table of the trigonometric functions. Or try to remember the first 3 functions \[\sin \theta ,\cos \theta \] and \[\tan \theta \]. The other 3 functions can be found taking the reverse of \[\sin \theta \] (to get \[\cos ec\theta \]), \[\cos \theta \] (to get \[\sec \theta \]) and \[\tan \theta \] (to get \[\cot \theta \]).
Last updated date: 30th Sep 2023
•
Total views: 270.2k
•
Views today: 7.70k
Recently Updated Pages
What do you mean by public facilities

Slogan on Noise Pollution

Paragraph on Friendship

Disadvantages of Advertising

Prepare a Pocket Guide on First Aid for your School

What is the Full Form of ILO, UNICEF and UNESCO

Trending doubts
How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

The poet says Beauty is heard in Can you hear beauty class 6 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

What is the past tense of read class 10 english CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
