
Find the value of $x$. If $\cos \left( 270{}^\circ +\theta \right)+x\cdot \cos \theta \cdot \cot \left( 180{}^\circ +\theta \right)=\sin \left( 270{}^\circ -\theta \right)$.
Answer
558.9k+ views
Hint: We must know about the relations among the different values given by sine and cosine functions on having angles that differ by multiples of $90{}^\circ $. These relations are mentioned below
$\begin{align}
& \sin \left( {{90}^{\circ }}-\theta \right)=\cos \theta \\
& \sin \left( {{90}^{\circ }}+\theta \right)=\cos \theta \\
& \sin \left( {{180}^{\circ }}-\theta \right)=\sin \theta \\
& \sin \left( {{180}^{\circ }}+\theta \right)=-\sin \theta \\
& \cos \left( {{90}^{\circ }}-\theta \right)=\sin \theta \\
& \cos \left( {{90}^{\circ }}+\theta \right)=\sin \theta \\
& \cos \left( {{180}^{\circ }}-\theta \right)=-\cos \theta \\
& \cos \left( {{180}^{\circ }}+\theta \right)=-\cos \theta \\
\end{align}$
Now, using these expressions and relations of sine and cosine functions, we will simplify the given equation and find the value of $x$.
Complete step by step answer:
We will first simplify the L.H.S. of the given equation by using the relations mentioned above, in the following manner,
L.H.S. $=\cos \left( 270{}^\circ +\theta \right)+x\cdot \cos \theta \cdot \cot \left( 180{}^\circ +\theta \right)$
Now, we know that $\cot \left( {{180}^{\circ }}+\theta \right)=\dfrac{\cos \left( {{180}^{\circ }}+\theta \right)}{\sin \left( {{180}^{\circ }}+\theta \right)}=\dfrac{-\cos \theta }{-\sin \theta }=\dfrac{\cos \theta }{\sin \theta }$.
The value for $\cos \left( {{270}^{\circ }}+\theta \right)=\cos \left( {{180}^{\circ }}+{{90}^{\circ }}+\theta \right)=\cos \left( {{180}^{\circ }}+\left( {{90}^{\circ }}+\theta \right) \right)$ . We will use the relations mentioned above in the following manner,
$\cos \left( {{180}^{\circ }}+\left( {{90}^{\circ }}+\theta \right) \right)=-\cos \left( {{90}^{\circ }}+\theta \right)=\sin \theta $. Therefore, we have $\cos \left( {{270}^{\circ }}+\theta \right)=\sin \theta $.
Substituting these values in the L.H.S., we get
L.H.S. $=\sin \theta +x\cdot \cos \theta \cdot \dfrac{\cos \theta }{\sin \theta }$
Simplifying this equation, we get
L.H.S. $=\sin \theta +x\cdot \dfrac{{{\cos }^{2}}\theta }{\sin \theta }=\dfrac{{{\sin }^{2}}\theta +x\cdot {{\cos }^{2}}\theta }{\sin \theta }$
Now, we will look at the R.H.S.,
R.H.S. $=\sin \left( {{270}^{\circ }}-\theta \right)=\sin \left( {{180}^{\circ }}+{{90}^{\circ }}-\theta \right)$
Again, we will use the relations mentioned above to simplify the R.H.S. as follows,
$\sin \left( {{180}^{\circ }}+{{90}^{\circ }}-\theta \right)=\sin \left( {{180}^{\circ }}+\left( {{90}^{\circ }}-\theta \right) \right)=-\sin \left( {{90}^{\circ }}-\theta \right)=-\cos \theta $
Now, we will equate the L.H.S. and R.H.S. and get the following equation,
$\dfrac{{{\sin }^{2}}\theta +x\cdot {{\cos }^{2}}\theta }{\sin \theta }=-\cos \theta $
Simplifying the above equation, we get
${{\sin }^{2}}\theta +x\cdot {{\cos }^{2}}\theta =-\cos \theta \sin \theta $
$\therefore x\cdot {{\cos }^{2}}\theta =-{{\sin }^{2}}\theta -\cos \theta \sin \theta $
Dividing by ${{\cos }^{2}}\theta $ on both sides of the above equation, we get
$\begin{align}
& x=-\dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta }-\dfrac{\cos \theta \sin \theta }{{{\cos }^{2}}\theta } \\
& =-{{\tan }^{2}}\theta -\tan \theta
\end{align}$
Hence, the value is $x={{\tan }^{2}}\theta -\tan \theta $.
Note: It is easy to make an error in such types of questions, if we are not aware of the relations that are mentioned in the hint as they are very crucial to solve the problem and get to the solution. In this question, we have used multiple relations and trigonometric identities to simplify the given equation. While solving questions related to trigonometry, simplification of the given equations is the key aspect.
$\begin{align}
& \sin \left( {{90}^{\circ }}-\theta \right)=\cos \theta \\
& \sin \left( {{90}^{\circ }}+\theta \right)=\cos \theta \\
& \sin \left( {{180}^{\circ }}-\theta \right)=\sin \theta \\
& \sin \left( {{180}^{\circ }}+\theta \right)=-\sin \theta \\
& \cos \left( {{90}^{\circ }}-\theta \right)=\sin \theta \\
& \cos \left( {{90}^{\circ }}+\theta \right)=\sin \theta \\
& \cos \left( {{180}^{\circ }}-\theta \right)=-\cos \theta \\
& \cos \left( {{180}^{\circ }}+\theta \right)=-\cos \theta \\
\end{align}$
Now, using these expressions and relations of sine and cosine functions, we will simplify the given equation and find the value of $x$.
Complete step by step answer:
We will first simplify the L.H.S. of the given equation by using the relations mentioned above, in the following manner,
L.H.S. $=\cos \left( 270{}^\circ +\theta \right)+x\cdot \cos \theta \cdot \cot \left( 180{}^\circ +\theta \right)$
Now, we know that $\cot \left( {{180}^{\circ }}+\theta \right)=\dfrac{\cos \left( {{180}^{\circ }}+\theta \right)}{\sin \left( {{180}^{\circ }}+\theta \right)}=\dfrac{-\cos \theta }{-\sin \theta }=\dfrac{\cos \theta }{\sin \theta }$.
The value for $\cos \left( {{270}^{\circ }}+\theta \right)=\cos \left( {{180}^{\circ }}+{{90}^{\circ }}+\theta \right)=\cos \left( {{180}^{\circ }}+\left( {{90}^{\circ }}+\theta \right) \right)$ . We will use the relations mentioned above in the following manner,
$\cos \left( {{180}^{\circ }}+\left( {{90}^{\circ }}+\theta \right) \right)=-\cos \left( {{90}^{\circ }}+\theta \right)=\sin \theta $. Therefore, we have $\cos \left( {{270}^{\circ }}+\theta \right)=\sin \theta $.
Substituting these values in the L.H.S., we get
L.H.S. $=\sin \theta +x\cdot \cos \theta \cdot \dfrac{\cos \theta }{\sin \theta }$
Simplifying this equation, we get
L.H.S. $=\sin \theta +x\cdot \dfrac{{{\cos }^{2}}\theta }{\sin \theta }=\dfrac{{{\sin }^{2}}\theta +x\cdot {{\cos }^{2}}\theta }{\sin \theta }$
Now, we will look at the R.H.S.,
R.H.S. $=\sin \left( {{270}^{\circ }}-\theta \right)=\sin \left( {{180}^{\circ }}+{{90}^{\circ }}-\theta \right)$
Again, we will use the relations mentioned above to simplify the R.H.S. as follows,
$\sin \left( {{180}^{\circ }}+{{90}^{\circ }}-\theta \right)=\sin \left( {{180}^{\circ }}+\left( {{90}^{\circ }}-\theta \right) \right)=-\sin \left( {{90}^{\circ }}-\theta \right)=-\cos \theta $
Now, we will equate the L.H.S. and R.H.S. and get the following equation,
$\dfrac{{{\sin }^{2}}\theta +x\cdot {{\cos }^{2}}\theta }{\sin \theta }=-\cos \theta $
Simplifying the above equation, we get
${{\sin }^{2}}\theta +x\cdot {{\cos }^{2}}\theta =-\cos \theta \sin \theta $
$\therefore x\cdot {{\cos }^{2}}\theta =-{{\sin }^{2}}\theta -\cos \theta \sin \theta $
Dividing by ${{\cos }^{2}}\theta $ on both sides of the above equation, we get
$\begin{align}
& x=-\dfrac{{{\sin }^{2}}\theta }{{{\cos }^{2}}\theta }-\dfrac{\cos \theta \sin \theta }{{{\cos }^{2}}\theta } \\
& =-{{\tan }^{2}}\theta -\tan \theta
\end{align}$
Hence, the value is $x={{\tan }^{2}}\theta -\tan \theta $.
Note: It is easy to make an error in such types of questions, if we are not aware of the relations that are mentioned in the hint as they are very crucial to solve the problem and get to the solution. In this question, we have used multiple relations and trigonometric identities to simplify the given equation. While solving questions related to trigonometry, simplification of the given equations is the key aspect.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Who was the first woman to receive Bharat Ratna?

Write a letter to the principal requesting him to grant class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

