
Find the value of x and y : \[x-3y=3x-1=2x-y\].
Answer
592.8k+ views
Hint: Let us assume \[x-3y=3x-1=2x-y=k\]. Now let us divide this equation into three parts. Now let us assume \[x-3y=k\] as equation (1). Now let us assume \[3x-1=k\] as equation (2). Now let us assume \[2x-y=k\] as equation (3). Now let us subtract equation (1) and equation (3), then we get a relation between x and y. Let us assume this as equation (4). Now let us subtract equation (1) and equation (2), then we get another relation between x and y. Let us assume this as equation (5). Now let us substitute equation (4) in equation (5), then we get the value of y. Now let us substitute equation (6) in equation (4), then we get the value of x.
Complete step-by-step answer:
Let us assume \[x-3y=3x-1=2x-y=k\].
From this, we can assume
\[\begin{align}
& x-3y=k.....(1) \\
& 3x-1=k......(2) \\
& 2x-y=k.....(3) \\
\end{align}\]
Now let us subtract equation (1) and equation (3), then we get
\[\begin{align}
& \Rightarrow \left( x-3y \right)-\left( 2x-y \right)=k-k \\
& \Rightarrow x-3y-2x+y=0 \\
& \Rightarrow -x-2y=0 \\
& \Rightarrow x=-2y....(4) \\
\end{align}\]
Now let us subtract equation (1) and equation (2), then we get
\[\begin{align}
& \Rightarrow \left( x-3y \right)-\left( 3x-1 \right)=k-k \\
& \Rightarrow x-3x-3y+1=0 \\
& \Rightarrow -2x-3y+1=0 \\
& \Rightarrow 2x+3y-1=0....(5) \\
\end{align}\]
Now let us substitute equation (4) in equation (5), then we get
\[\begin{align}
& \Rightarrow 2\left( -2y \right)+3y-1=0 \\
& \Rightarrow -4y+3y-1=0 \\
& \Rightarrow -y-1=0 \\
& \Rightarrow y=-1....(6) \\
\end{align}\]
Now let us substitute equation (6) in equation (4), then we get
\[\begin{align}
& \Rightarrow x=-2(-1) \\
& \Rightarrow x=2.....(7) \\
\end{align}\]
So, from equation (6) and equation (7) it is clear that the value of x and y are 2 and -1.
Note: This problem can be alternatively.
Let us assume \[x-3y=3x-1=2x-y=k\].
From this, we can assume
\[\begin{align}
& x-3y=k.....(1) \\
& 3x-1=k......(2) \\
& 2x-y=k.....(3) \\
\end{align}\]
Now let us subtract equation (1) and equation (2), then we get
\[\begin{align}
& \Rightarrow \left( x-3y \right)-\left( 3x-1 \right)=k-k \\
& \Rightarrow x-3x-3y+1=0 \\
& \Rightarrow -2x-3y+1=0 \\
& \Rightarrow 2x+3y-1=0....(4) \\
\end{align}\]
Now let us subtract equation (2) and equation (3), then we get
\[\begin{align}
& \Rightarrow \left( 3x-1 \right)-\left( 2x-y \right)=k-k \\
& \Rightarrow 3x-1-2x+y=0 \\
& \Rightarrow x+y-1=0....(5) \\
\end{align}\]
Now let us subtract equation (4) and equation (5), then we get
\[\begin{align}
& \Rightarrow \left( 2x+3y-1 \right)-\left( x+y-1 \right)=0 \\
& \Rightarrow 2x+3y-1-x-y+1=0 \\
& \Rightarrow x+2y=0....(6) \\
\end{align}\]
Now let us subtract equation (5) and equation (6), then we get
\[\begin{align}
& \Rightarrow \left( x+y-1 \right)-\left( x+2y \right)=0 \\
& \Rightarrow x+y-1-x-2y=0 \\
& \Rightarrow -y-1=0 \\
& \Rightarrow y=-1....(7) \\
\end{align}\]
Now let us substitute equation (7) in equation (6), then we get
\[\begin{align}
& \Rightarrow x+2\left( -1 \right)=0 \\
& \Rightarrow x-2=0 \\
& \Rightarrow x=2.....(8) \\
\end{align}\]
So, from equation (7) and equation (8) it is clear that the value of x and y are 2 and -1.
Complete step-by-step answer:
Let us assume \[x-3y=3x-1=2x-y=k\].
From this, we can assume
\[\begin{align}
& x-3y=k.....(1) \\
& 3x-1=k......(2) \\
& 2x-y=k.....(3) \\
\end{align}\]
Now let us subtract equation (1) and equation (3), then we get
\[\begin{align}
& \Rightarrow \left( x-3y \right)-\left( 2x-y \right)=k-k \\
& \Rightarrow x-3y-2x+y=0 \\
& \Rightarrow -x-2y=0 \\
& \Rightarrow x=-2y....(4) \\
\end{align}\]
Now let us subtract equation (1) and equation (2), then we get
\[\begin{align}
& \Rightarrow \left( x-3y \right)-\left( 3x-1 \right)=k-k \\
& \Rightarrow x-3x-3y+1=0 \\
& \Rightarrow -2x-3y+1=0 \\
& \Rightarrow 2x+3y-1=0....(5) \\
\end{align}\]
Now let us substitute equation (4) in equation (5), then we get
\[\begin{align}
& \Rightarrow 2\left( -2y \right)+3y-1=0 \\
& \Rightarrow -4y+3y-1=0 \\
& \Rightarrow -y-1=0 \\
& \Rightarrow y=-1....(6) \\
\end{align}\]
Now let us substitute equation (6) in equation (4), then we get
\[\begin{align}
& \Rightarrow x=-2(-1) \\
& \Rightarrow x=2.....(7) \\
\end{align}\]
So, from equation (6) and equation (7) it is clear that the value of x and y are 2 and -1.
Note: This problem can be alternatively.
Let us assume \[x-3y=3x-1=2x-y=k\].
From this, we can assume
\[\begin{align}
& x-3y=k.....(1) \\
& 3x-1=k......(2) \\
& 2x-y=k.....(3) \\
\end{align}\]
Now let us subtract equation (1) and equation (2), then we get
\[\begin{align}
& \Rightarrow \left( x-3y \right)-\left( 3x-1 \right)=k-k \\
& \Rightarrow x-3x-3y+1=0 \\
& \Rightarrow -2x-3y+1=0 \\
& \Rightarrow 2x+3y-1=0....(4) \\
\end{align}\]
Now let us subtract equation (2) and equation (3), then we get
\[\begin{align}
& \Rightarrow \left( 3x-1 \right)-\left( 2x-y \right)=k-k \\
& \Rightarrow 3x-1-2x+y=0 \\
& \Rightarrow x+y-1=0....(5) \\
\end{align}\]
Now let us subtract equation (4) and equation (5), then we get
\[\begin{align}
& \Rightarrow \left( 2x+3y-1 \right)-\left( x+y-1 \right)=0 \\
& \Rightarrow 2x+3y-1-x-y+1=0 \\
& \Rightarrow x+2y=0....(6) \\
\end{align}\]
Now let us subtract equation (5) and equation (6), then we get
\[\begin{align}
& \Rightarrow \left( x+y-1 \right)-\left( x+2y \right)=0 \\
& \Rightarrow x+y-1-x-2y=0 \\
& \Rightarrow -y-1=0 \\
& \Rightarrow y=-1....(7) \\
\end{align}\]
Now let us substitute equation (7) in equation (6), then we get
\[\begin{align}
& \Rightarrow x+2\left( -1 \right)=0 \\
& \Rightarrow x-2=0 \\
& \Rightarrow x=2.....(8) \\
\end{align}\]
So, from equation (7) and equation (8) it is clear that the value of x and y are 2 and -1.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

