
Find the value of x and y : \[x-3y=3x-1=2x-y\].
Answer
521.4k+ views
Hint: Let us assume \[x-3y=3x-1=2x-y=k\]. Now let us divide this equation into three parts. Now let us assume \[x-3y=k\] as equation (1). Now let us assume \[3x-1=k\] as equation (2). Now let us assume \[2x-y=k\] as equation (3). Now let us subtract equation (1) and equation (3), then we get a relation between x and y. Let us assume this as equation (4). Now let us subtract equation (1) and equation (2), then we get another relation between x and y. Let us assume this as equation (5). Now let us substitute equation (4) in equation (5), then we get the value of y. Now let us substitute equation (6) in equation (4), then we get the value of x.
Complete step-by-step answer:
Let us assume \[x-3y=3x-1=2x-y=k\].
From this, we can assume
\[\begin{align}
& x-3y=k.....(1) \\
& 3x-1=k......(2) \\
& 2x-y=k.....(3) \\
\end{align}\]
Now let us subtract equation (1) and equation (3), then we get
\[\begin{align}
& \Rightarrow \left( x-3y \right)-\left( 2x-y \right)=k-k \\
& \Rightarrow x-3y-2x+y=0 \\
& \Rightarrow -x-2y=0 \\
& \Rightarrow x=-2y....(4) \\
\end{align}\]
Now let us subtract equation (1) and equation (2), then we get
\[\begin{align}
& \Rightarrow \left( x-3y \right)-\left( 3x-1 \right)=k-k \\
& \Rightarrow x-3x-3y+1=0 \\
& \Rightarrow -2x-3y+1=0 \\
& \Rightarrow 2x+3y-1=0....(5) \\
\end{align}\]
Now let us substitute equation (4) in equation (5), then we get
\[\begin{align}
& \Rightarrow 2\left( -2y \right)+3y-1=0 \\
& \Rightarrow -4y+3y-1=0 \\
& \Rightarrow -y-1=0 \\
& \Rightarrow y=-1....(6) \\
\end{align}\]
Now let us substitute equation (6) in equation (4), then we get
\[\begin{align}
& \Rightarrow x=-2(-1) \\
& \Rightarrow x=2.....(7) \\
\end{align}\]
So, from equation (6) and equation (7) it is clear that the value of x and y are 2 and -1.
Note: This problem can be alternatively.
Let us assume \[x-3y=3x-1=2x-y=k\].
From this, we can assume
\[\begin{align}
& x-3y=k.....(1) \\
& 3x-1=k......(2) \\
& 2x-y=k.....(3) \\
\end{align}\]
Now let us subtract equation (1) and equation (2), then we get
\[\begin{align}
& \Rightarrow \left( x-3y \right)-\left( 3x-1 \right)=k-k \\
& \Rightarrow x-3x-3y+1=0 \\
& \Rightarrow -2x-3y+1=0 \\
& \Rightarrow 2x+3y-1=0....(4) \\
\end{align}\]
Now let us subtract equation (2) and equation (3), then we get
\[\begin{align}
& \Rightarrow \left( 3x-1 \right)-\left( 2x-y \right)=k-k \\
& \Rightarrow 3x-1-2x+y=0 \\
& \Rightarrow x+y-1=0....(5) \\
\end{align}\]
Now let us subtract equation (4) and equation (5), then we get
\[\begin{align}
& \Rightarrow \left( 2x+3y-1 \right)-\left( x+y-1 \right)=0 \\
& \Rightarrow 2x+3y-1-x-y+1=0 \\
& \Rightarrow x+2y=0....(6) \\
\end{align}\]
Now let us subtract equation (5) and equation (6), then we get
\[\begin{align}
& \Rightarrow \left( x+y-1 \right)-\left( x+2y \right)=0 \\
& \Rightarrow x+y-1-x-2y=0 \\
& \Rightarrow -y-1=0 \\
& \Rightarrow y=-1....(7) \\
\end{align}\]
Now let us substitute equation (7) in equation (6), then we get
\[\begin{align}
& \Rightarrow x+2\left( -1 \right)=0 \\
& \Rightarrow x-2=0 \\
& \Rightarrow x=2.....(8) \\
\end{align}\]
So, from equation (7) and equation (8) it is clear that the value of x and y are 2 and -1.
Complete step-by-step answer:
Let us assume \[x-3y=3x-1=2x-y=k\].
From this, we can assume
\[\begin{align}
& x-3y=k.....(1) \\
& 3x-1=k......(2) \\
& 2x-y=k.....(3) \\
\end{align}\]
Now let us subtract equation (1) and equation (3), then we get
\[\begin{align}
& \Rightarrow \left( x-3y \right)-\left( 2x-y \right)=k-k \\
& \Rightarrow x-3y-2x+y=0 \\
& \Rightarrow -x-2y=0 \\
& \Rightarrow x=-2y....(4) \\
\end{align}\]
Now let us subtract equation (1) and equation (2), then we get
\[\begin{align}
& \Rightarrow \left( x-3y \right)-\left( 3x-1 \right)=k-k \\
& \Rightarrow x-3x-3y+1=0 \\
& \Rightarrow -2x-3y+1=0 \\
& \Rightarrow 2x+3y-1=0....(5) \\
\end{align}\]
Now let us substitute equation (4) in equation (5), then we get
\[\begin{align}
& \Rightarrow 2\left( -2y \right)+3y-1=0 \\
& \Rightarrow -4y+3y-1=0 \\
& \Rightarrow -y-1=0 \\
& \Rightarrow y=-1....(6) \\
\end{align}\]
Now let us substitute equation (6) in equation (4), then we get
\[\begin{align}
& \Rightarrow x=-2(-1) \\
& \Rightarrow x=2.....(7) \\
\end{align}\]
So, from equation (6) and equation (7) it is clear that the value of x and y are 2 and -1.
Note: This problem can be alternatively.
Let us assume \[x-3y=3x-1=2x-y=k\].
From this, we can assume
\[\begin{align}
& x-3y=k.....(1) \\
& 3x-1=k......(2) \\
& 2x-y=k.....(3) \\
\end{align}\]
Now let us subtract equation (1) and equation (2), then we get
\[\begin{align}
& \Rightarrow \left( x-3y \right)-\left( 3x-1 \right)=k-k \\
& \Rightarrow x-3x-3y+1=0 \\
& \Rightarrow -2x-3y+1=0 \\
& \Rightarrow 2x+3y-1=0....(4) \\
\end{align}\]
Now let us subtract equation (2) and equation (3), then we get
\[\begin{align}
& \Rightarrow \left( 3x-1 \right)-\left( 2x-y \right)=k-k \\
& \Rightarrow 3x-1-2x+y=0 \\
& \Rightarrow x+y-1=0....(5) \\
\end{align}\]
Now let us subtract equation (4) and equation (5), then we get
\[\begin{align}
& \Rightarrow \left( 2x+3y-1 \right)-\left( x+y-1 \right)=0 \\
& \Rightarrow 2x+3y-1-x-y+1=0 \\
& \Rightarrow x+2y=0....(6) \\
\end{align}\]
Now let us subtract equation (5) and equation (6), then we get
\[\begin{align}
& \Rightarrow \left( x+y-1 \right)-\left( x+2y \right)=0 \\
& \Rightarrow x+y-1-x-2y=0 \\
& \Rightarrow -y-1=0 \\
& \Rightarrow y=-1....(7) \\
\end{align}\]
Now let us substitute equation (7) in equation (6), then we get
\[\begin{align}
& \Rightarrow x+2\left( -1 \right)=0 \\
& \Rightarrow x-2=0 \\
& \Rightarrow x=2.....(8) \\
\end{align}\]
So, from equation (7) and equation (8) it is clear that the value of x and y are 2 and -1.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 9 Social Science: Engaging Questions & Answers for Success

Trending doubts
Which one is a true fish A Jellyfish B Starfish C Dogfish class 10 biology CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Why is there a time difference of about 5 hours between class 10 social science CBSE

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Write examples of herbivores carnivores and omnivo class 10 biology CBSE

When and how did Canada eventually gain its independence class 10 social science CBSE
