
Find the value of X and Y if
\[2X + 3Y = \left[ {\begin{array}{*{20}{c}}
2&3 \\
4&0
\end{array}} \right]\] and \[3X + 2Y = \left[ {\begin{array}{*{20}{c}}
2&{ - 2} \\
{ - 1}&5
\end{array}} \right]\]
Answer
577.8k+ views
Hint:Here first we will assume the two given matrices to be P and Q respectively and then form two linear equations.We will then solve those equations by elimination method and find the values of X and Y.
Complete step-by-step answer:
The given equations are:
\[2X + 3Y = \left[ {\begin{array}{*{20}{c}}
2&3 \\
4&0
\end{array}} \right]\] and \[3X + 2Y = \left[ {\begin{array}{*{20}{c}}
2&{ - 2} \\
{ - 1}&5
\end{array}} \right]\]
Let us assume
\[\left[ {\begin{array}{*{20}{c}}
2&3 \\
4&0
\end{array}} \right] = P\] and \[\left[ {\begin{array}{*{20}{c}}
2&{ - 2} \\
{ - 1}&5
\end{array}} \right] = Q\]
Therefore putting these values in the above equations we get:-
\[
2X + 3Y = P...................\left( 1 \right) \\
3X + 2Y = Q...............\left( 2 \right) \\
\]
Now we will solve these equations using the elimination method.
Hence multiplying equation 1 by 3 we get:-
\[3 \times \left( {2X + 3Y = P} \right)\]
Solving it further we get:-
\[
3 \times 2X + 3 \times 3Y = 3 \times P \\
6X + 9Y = 3P....................\left( 3 \right) \\
\]
Now multiplying equation 2 by 2 we get:-
\[2 \times \left( {3X + 2Y = Q} \right)\]
Solving it further we get:-
\[
2 \times 3X + 2 \times 2Y = 2 \times Q \\
6X + 4Y = 2Q........................\left( 4 \right) \\
\]
Now subtracting equation 4 from equation 3 we get:-
\[
6X + 9Y = 3P \\
6X + 4Y = 2Q \\
\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
{\text{ }}5Y = 3P - 2Q \\
\]
Now evaluating the value of y we get:-
\[
Y = \dfrac{{3P - 2Q}}{5} \\
\Rightarrow Y = \dfrac{3}{5}P - \dfrac{2}{5}Q \\
\]
Now putting in the values of P and Q we get:-
\[Y = \dfrac{3}{5}\left[ {\begin{array}{*{20}{c}}
2&3 \\
4&0
\end{array}} \right] - \dfrac{2}{5}\left[ {\begin{array}{*{20}{c}}
2&{ - 2} \\
{ - 1}&5
\end{array}} \right]\]
Now multiplying and solving it further we get:-
\[Y = \left[ {\begin{array}{*{20}{c}}
{\dfrac{6}{5}}&{\dfrac{9}{5}} \\
{\dfrac{{12}}{5}}&0
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
{\dfrac{4}{5}}&{\dfrac{{ - 4}}{5}} \\
{\dfrac{{ - 2}}{5}}&{\dfrac{{10}}{5}}
\end{array}} \right]\]
Solving it further we get:-
\[
\Rightarrow Y = \left[ {\begin{array}{*{20}{c}}
{\dfrac{6}{5} - \dfrac{4}{5}}&{\dfrac{9}{5} - \left( {\dfrac{{ - 4}}{5}} \right)} \\
{\dfrac{{12}}{5} - \left( {\dfrac{{ - 2}}{5}} \right)}&{0 - \left( {\dfrac{{10}}{5}} \right)}
\end{array}} \right] \\
\Rightarrow Y = \left[ {\begin{array}{*{20}{c}}
{\dfrac{2}{5}}&{\dfrac{{13}}{5}} \\
{\dfrac{{14}}{5}}&{\dfrac{{ - 10}}{5}}
\end{array}} \right] \\
\]
Now putting this value in equation 1 we get:-
The equation 1 is given by:-
\[2X + 3Y = P\]
Now putting the known values of Y and P we get:-
\[2X + 3\left[ {\begin{array}{*{20}{c}}
{\dfrac{2}{5}}&{\dfrac{{13}}{5}} \\
{\dfrac{{14}}{5}}&{\dfrac{{ - 10}}{5}}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
2&3 \\
4&0
\end{array}} \right]\]
Now on multiplying by 3 we get:-
\[
2X + \left[ {\begin{array}{*{20}{c}}
{\dfrac{2}{5} \times 3}&{\dfrac{{13}}{5} \times 3} \\
{\dfrac{{14}}{5} \times 3}&{\dfrac{{ - 10}}{5} \times 3}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
2&3 \\
4&0
\end{array}} \right] \\
2X + \left[ {\begin{array}{*{20}{c}}
{\dfrac{6}{5}}&{\dfrac{{39}}{5}} \\
{\dfrac{{42}}{5}}&{\dfrac{{ - 30}}{5}}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
2&3 \\
4&0
\end{array}} \right] \\
\]
Now simplifying for the value of X we get:-
\[
2X = \left[ {\begin{array}{*{20}{c}}
{2 - \dfrac{6}{5}}&{3 - \dfrac{{39}}{5}} \\
{4 - \dfrac{{42}}{5}}&{0 - \dfrac{{30}}{5}}
\end{array}} \right] \\
2X = \left[ {\begin{array}{*{20}{c}}
{\dfrac{{10 - 6}}{5}}&{\dfrac{{15 - 39}}{5}} \\
{\dfrac{{20 - 42}}{5}}&{\dfrac{{ - 30}}{5}}
\end{array}} \right] \\
2X = \left[ {\begin{array}{*{20}{c}}
{\dfrac{4}{5}}&{\dfrac{{ - 24}}{5}} \\
{\dfrac{{ - 22}}{5}}&{\dfrac{{ - 30}}{5}}
\end{array}} \right] \\
\]
Now dividing by 2 we get:-
\[
X = \left[ {\begin{array}{*{20}{c}}
{\dfrac{2}{5}}&{\dfrac{{ - 12}}{5}} \\
{\dfrac{{ - 11}}{5}}&{\dfrac{{ - 15}}{5}}
\end{array}} \right] \\
\Rightarrow X = \left[ {\begin{array}{*{20}{c}}
{\dfrac{2}{5}}&{\dfrac{{ - 12}}{5}} \\
{\dfrac{{ - 11}}{5}}&{ - 3}
\end{array}} \right] \\
\]
Hence,
\[X = \left[ {\begin{array}{*{20}{c}}
{\dfrac{2}{5}}&{\dfrac{{ - 12}}{5}} \\
{\dfrac{{ - 11}}{5}}&{ - 3}
\end{array}} \right]\] and \[Y = \left[ {\begin{array}{*{20}{c}}
{\dfrac{2}{5}}&{\dfrac{{13}}{5}} \\
{\dfrac{{14}}{5}}&{\dfrac{{ - 10}}{5}}
\end{array}} \right]\]
Note:Students should note that when a matrix is multiplied by a scalar then every term inside the matrix gets multiplied by that scalar.Also, students should carefully calculate the values and use the elimination method to solve the equations.
Complete step-by-step answer:
The given equations are:
\[2X + 3Y = \left[ {\begin{array}{*{20}{c}}
2&3 \\
4&0
\end{array}} \right]\] and \[3X + 2Y = \left[ {\begin{array}{*{20}{c}}
2&{ - 2} \\
{ - 1}&5
\end{array}} \right]\]
Let us assume
\[\left[ {\begin{array}{*{20}{c}}
2&3 \\
4&0
\end{array}} \right] = P\] and \[\left[ {\begin{array}{*{20}{c}}
2&{ - 2} \\
{ - 1}&5
\end{array}} \right] = Q\]
Therefore putting these values in the above equations we get:-
\[
2X + 3Y = P...................\left( 1 \right) \\
3X + 2Y = Q...............\left( 2 \right) \\
\]
Now we will solve these equations using the elimination method.
Hence multiplying equation 1 by 3 we get:-
\[3 \times \left( {2X + 3Y = P} \right)\]
Solving it further we get:-
\[
3 \times 2X + 3 \times 3Y = 3 \times P \\
6X + 9Y = 3P....................\left( 3 \right) \\
\]
Now multiplying equation 2 by 2 we get:-
\[2 \times \left( {3X + 2Y = Q} \right)\]
Solving it further we get:-
\[
2 \times 3X + 2 \times 2Y = 2 \times Q \\
6X + 4Y = 2Q........................\left( 4 \right) \\
\]
Now subtracting equation 4 from equation 3 we get:-
\[
6X + 9Y = 3P \\
6X + 4Y = 2Q \\
\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
{\text{ }}5Y = 3P - 2Q \\
\]
Now evaluating the value of y we get:-
\[
Y = \dfrac{{3P - 2Q}}{5} \\
\Rightarrow Y = \dfrac{3}{5}P - \dfrac{2}{5}Q \\
\]
Now putting in the values of P and Q we get:-
\[Y = \dfrac{3}{5}\left[ {\begin{array}{*{20}{c}}
2&3 \\
4&0
\end{array}} \right] - \dfrac{2}{5}\left[ {\begin{array}{*{20}{c}}
2&{ - 2} \\
{ - 1}&5
\end{array}} \right]\]
Now multiplying and solving it further we get:-
\[Y = \left[ {\begin{array}{*{20}{c}}
{\dfrac{6}{5}}&{\dfrac{9}{5}} \\
{\dfrac{{12}}{5}}&0
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
{\dfrac{4}{5}}&{\dfrac{{ - 4}}{5}} \\
{\dfrac{{ - 2}}{5}}&{\dfrac{{10}}{5}}
\end{array}} \right]\]
Solving it further we get:-
\[
\Rightarrow Y = \left[ {\begin{array}{*{20}{c}}
{\dfrac{6}{5} - \dfrac{4}{5}}&{\dfrac{9}{5} - \left( {\dfrac{{ - 4}}{5}} \right)} \\
{\dfrac{{12}}{5} - \left( {\dfrac{{ - 2}}{5}} \right)}&{0 - \left( {\dfrac{{10}}{5}} \right)}
\end{array}} \right] \\
\Rightarrow Y = \left[ {\begin{array}{*{20}{c}}
{\dfrac{2}{5}}&{\dfrac{{13}}{5}} \\
{\dfrac{{14}}{5}}&{\dfrac{{ - 10}}{5}}
\end{array}} \right] \\
\]
Now putting this value in equation 1 we get:-
The equation 1 is given by:-
\[2X + 3Y = P\]
Now putting the known values of Y and P we get:-
\[2X + 3\left[ {\begin{array}{*{20}{c}}
{\dfrac{2}{5}}&{\dfrac{{13}}{5}} \\
{\dfrac{{14}}{5}}&{\dfrac{{ - 10}}{5}}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
2&3 \\
4&0
\end{array}} \right]\]
Now on multiplying by 3 we get:-
\[
2X + \left[ {\begin{array}{*{20}{c}}
{\dfrac{2}{5} \times 3}&{\dfrac{{13}}{5} \times 3} \\
{\dfrac{{14}}{5} \times 3}&{\dfrac{{ - 10}}{5} \times 3}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
2&3 \\
4&0
\end{array}} \right] \\
2X + \left[ {\begin{array}{*{20}{c}}
{\dfrac{6}{5}}&{\dfrac{{39}}{5}} \\
{\dfrac{{42}}{5}}&{\dfrac{{ - 30}}{5}}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
2&3 \\
4&0
\end{array}} \right] \\
\]
Now simplifying for the value of X we get:-
\[
2X = \left[ {\begin{array}{*{20}{c}}
{2 - \dfrac{6}{5}}&{3 - \dfrac{{39}}{5}} \\
{4 - \dfrac{{42}}{5}}&{0 - \dfrac{{30}}{5}}
\end{array}} \right] \\
2X = \left[ {\begin{array}{*{20}{c}}
{\dfrac{{10 - 6}}{5}}&{\dfrac{{15 - 39}}{5}} \\
{\dfrac{{20 - 42}}{5}}&{\dfrac{{ - 30}}{5}}
\end{array}} \right] \\
2X = \left[ {\begin{array}{*{20}{c}}
{\dfrac{4}{5}}&{\dfrac{{ - 24}}{5}} \\
{\dfrac{{ - 22}}{5}}&{\dfrac{{ - 30}}{5}}
\end{array}} \right] \\
\]
Now dividing by 2 we get:-
\[
X = \left[ {\begin{array}{*{20}{c}}
{\dfrac{2}{5}}&{\dfrac{{ - 12}}{5}} \\
{\dfrac{{ - 11}}{5}}&{\dfrac{{ - 15}}{5}}
\end{array}} \right] \\
\Rightarrow X = \left[ {\begin{array}{*{20}{c}}
{\dfrac{2}{5}}&{\dfrac{{ - 12}}{5}} \\
{\dfrac{{ - 11}}{5}}&{ - 3}
\end{array}} \right] \\
\]
Hence,
\[X = \left[ {\begin{array}{*{20}{c}}
{\dfrac{2}{5}}&{\dfrac{{ - 12}}{5}} \\
{\dfrac{{ - 11}}{5}}&{ - 3}
\end{array}} \right]\] and \[Y = \left[ {\begin{array}{*{20}{c}}
{\dfrac{2}{5}}&{\dfrac{{13}}{5}} \\
{\dfrac{{14}}{5}}&{\dfrac{{ - 10}}{5}}
\end{array}} \right]\]
Note:Students should note that when a matrix is multiplied by a scalar then every term inside the matrix gets multiplied by that scalar.Also, students should carefully calculate the values and use the elimination method to solve the equations.
Recently Updated Pages
Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Master Class 7 Maths: Engaging Questions & Answers for Success

Class 7 Question and Answer - Your Ultimate Solutions Guide

Master Class 6 Maths: Engaging Questions & Answers for Success

Class 6 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

