
Find the value of X and Y if
\[2X + 3Y = \left[ {\begin{array}{*{20}{c}}
2&3 \\
4&0
\end{array}} \right]\] and \[3X + 2Y = \left[ {\begin{array}{*{20}{c}}
2&{ - 2} \\
{ - 1}&5
\end{array}} \right]\]
Answer
524.4k+ views
Hint:Here first we will assume the two given matrices to be P and Q respectively and then form two linear equations.We will then solve those equations by elimination method and find the values of X and Y.
Complete step-by-step answer:
The given equations are:
\[2X + 3Y = \left[ {\begin{array}{*{20}{c}}
2&3 \\
4&0
\end{array}} \right]\] and \[3X + 2Y = \left[ {\begin{array}{*{20}{c}}
2&{ - 2} \\
{ - 1}&5
\end{array}} \right]\]
Let us assume
\[\left[ {\begin{array}{*{20}{c}}
2&3 \\
4&0
\end{array}} \right] = P\] and \[\left[ {\begin{array}{*{20}{c}}
2&{ - 2} \\
{ - 1}&5
\end{array}} \right] = Q\]
Therefore putting these values in the above equations we get:-
\[
2X + 3Y = P...................\left( 1 \right) \\
3X + 2Y = Q...............\left( 2 \right) \\
\]
Now we will solve these equations using the elimination method.
Hence multiplying equation 1 by 3 we get:-
\[3 \times \left( {2X + 3Y = P} \right)\]
Solving it further we get:-
\[
3 \times 2X + 3 \times 3Y = 3 \times P \\
6X + 9Y = 3P....................\left( 3 \right) \\
\]
Now multiplying equation 2 by 2 we get:-
\[2 \times \left( {3X + 2Y = Q} \right)\]
Solving it further we get:-
\[
2 \times 3X + 2 \times 2Y = 2 \times Q \\
6X + 4Y = 2Q........................\left( 4 \right) \\
\]
Now subtracting equation 4 from equation 3 we get:-
\[
6X + 9Y = 3P \\
6X + 4Y = 2Q \\
\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
{\text{ }}5Y = 3P - 2Q \\
\]
Now evaluating the value of y we get:-
\[
Y = \dfrac{{3P - 2Q}}{5} \\
\Rightarrow Y = \dfrac{3}{5}P - \dfrac{2}{5}Q \\
\]
Now putting in the values of P and Q we get:-
\[Y = \dfrac{3}{5}\left[ {\begin{array}{*{20}{c}}
2&3 \\
4&0
\end{array}} \right] - \dfrac{2}{5}\left[ {\begin{array}{*{20}{c}}
2&{ - 2} \\
{ - 1}&5
\end{array}} \right]\]
Now multiplying and solving it further we get:-
\[Y = \left[ {\begin{array}{*{20}{c}}
{\dfrac{6}{5}}&{\dfrac{9}{5}} \\
{\dfrac{{12}}{5}}&0
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
{\dfrac{4}{5}}&{\dfrac{{ - 4}}{5}} \\
{\dfrac{{ - 2}}{5}}&{\dfrac{{10}}{5}}
\end{array}} \right]\]
Solving it further we get:-
\[
\Rightarrow Y = \left[ {\begin{array}{*{20}{c}}
{\dfrac{6}{5} - \dfrac{4}{5}}&{\dfrac{9}{5} - \left( {\dfrac{{ - 4}}{5}} \right)} \\
{\dfrac{{12}}{5} - \left( {\dfrac{{ - 2}}{5}} \right)}&{0 - \left( {\dfrac{{10}}{5}} \right)}
\end{array}} \right] \\
\Rightarrow Y = \left[ {\begin{array}{*{20}{c}}
{\dfrac{2}{5}}&{\dfrac{{13}}{5}} \\
{\dfrac{{14}}{5}}&{\dfrac{{ - 10}}{5}}
\end{array}} \right] \\
\]
Now putting this value in equation 1 we get:-
The equation 1 is given by:-
\[2X + 3Y = P\]
Now putting the known values of Y and P we get:-
\[2X + 3\left[ {\begin{array}{*{20}{c}}
{\dfrac{2}{5}}&{\dfrac{{13}}{5}} \\
{\dfrac{{14}}{5}}&{\dfrac{{ - 10}}{5}}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
2&3 \\
4&0
\end{array}} \right]\]
Now on multiplying by 3 we get:-
\[
2X + \left[ {\begin{array}{*{20}{c}}
{\dfrac{2}{5} \times 3}&{\dfrac{{13}}{5} \times 3} \\
{\dfrac{{14}}{5} \times 3}&{\dfrac{{ - 10}}{5} \times 3}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
2&3 \\
4&0
\end{array}} \right] \\
2X + \left[ {\begin{array}{*{20}{c}}
{\dfrac{6}{5}}&{\dfrac{{39}}{5}} \\
{\dfrac{{42}}{5}}&{\dfrac{{ - 30}}{5}}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
2&3 \\
4&0
\end{array}} \right] \\
\]
Now simplifying for the value of X we get:-
\[
2X = \left[ {\begin{array}{*{20}{c}}
{2 - \dfrac{6}{5}}&{3 - \dfrac{{39}}{5}} \\
{4 - \dfrac{{42}}{5}}&{0 - \dfrac{{30}}{5}}
\end{array}} \right] \\
2X = \left[ {\begin{array}{*{20}{c}}
{\dfrac{{10 - 6}}{5}}&{\dfrac{{15 - 39}}{5}} \\
{\dfrac{{20 - 42}}{5}}&{\dfrac{{ - 30}}{5}}
\end{array}} \right] \\
2X = \left[ {\begin{array}{*{20}{c}}
{\dfrac{4}{5}}&{\dfrac{{ - 24}}{5}} \\
{\dfrac{{ - 22}}{5}}&{\dfrac{{ - 30}}{5}}
\end{array}} \right] \\
\]
Now dividing by 2 we get:-
\[
X = \left[ {\begin{array}{*{20}{c}}
{\dfrac{2}{5}}&{\dfrac{{ - 12}}{5}} \\
{\dfrac{{ - 11}}{5}}&{\dfrac{{ - 15}}{5}}
\end{array}} \right] \\
\Rightarrow X = \left[ {\begin{array}{*{20}{c}}
{\dfrac{2}{5}}&{\dfrac{{ - 12}}{5}} \\
{\dfrac{{ - 11}}{5}}&{ - 3}
\end{array}} \right] \\
\]
Hence,
\[X = \left[ {\begin{array}{*{20}{c}}
{\dfrac{2}{5}}&{\dfrac{{ - 12}}{5}} \\
{\dfrac{{ - 11}}{5}}&{ - 3}
\end{array}} \right]\] and \[Y = \left[ {\begin{array}{*{20}{c}}
{\dfrac{2}{5}}&{\dfrac{{13}}{5}} \\
{\dfrac{{14}}{5}}&{\dfrac{{ - 10}}{5}}
\end{array}} \right]\]
Note:Students should note that when a matrix is multiplied by a scalar then every term inside the matrix gets multiplied by that scalar.Also, students should carefully calculate the values and use the elimination method to solve the equations.
Complete step-by-step answer:
The given equations are:
\[2X + 3Y = \left[ {\begin{array}{*{20}{c}}
2&3 \\
4&0
\end{array}} \right]\] and \[3X + 2Y = \left[ {\begin{array}{*{20}{c}}
2&{ - 2} \\
{ - 1}&5
\end{array}} \right]\]
Let us assume
\[\left[ {\begin{array}{*{20}{c}}
2&3 \\
4&0
\end{array}} \right] = P\] and \[\left[ {\begin{array}{*{20}{c}}
2&{ - 2} \\
{ - 1}&5
\end{array}} \right] = Q\]
Therefore putting these values in the above equations we get:-
\[
2X + 3Y = P...................\left( 1 \right) \\
3X + 2Y = Q...............\left( 2 \right) \\
\]
Now we will solve these equations using the elimination method.
Hence multiplying equation 1 by 3 we get:-
\[3 \times \left( {2X + 3Y = P} \right)\]
Solving it further we get:-
\[
3 \times 2X + 3 \times 3Y = 3 \times P \\
6X + 9Y = 3P....................\left( 3 \right) \\
\]
Now multiplying equation 2 by 2 we get:-
\[2 \times \left( {3X + 2Y = Q} \right)\]
Solving it further we get:-
\[
2 \times 3X + 2 \times 2Y = 2 \times Q \\
6X + 4Y = 2Q........................\left( 4 \right) \\
\]
Now subtracting equation 4 from equation 3 we get:-
\[
6X + 9Y = 3P \\
6X + 4Y = 2Q \\
\cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
{\text{ }}5Y = 3P - 2Q \\
\]
Now evaluating the value of y we get:-
\[
Y = \dfrac{{3P - 2Q}}{5} \\
\Rightarrow Y = \dfrac{3}{5}P - \dfrac{2}{5}Q \\
\]
Now putting in the values of P and Q we get:-
\[Y = \dfrac{3}{5}\left[ {\begin{array}{*{20}{c}}
2&3 \\
4&0
\end{array}} \right] - \dfrac{2}{5}\left[ {\begin{array}{*{20}{c}}
2&{ - 2} \\
{ - 1}&5
\end{array}} \right]\]
Now multiplying and solving it further we get:-
\[Y = \left[ {\begin{array}{*{20}{c}}
{\dfrac{6}{5}}&{\dfrac{9}{5}} \\
{\dfrac{{12}}{5}}&0
\end{array}} \right] - \left[ {\begin{array}{*{20}{c}}
{\dfrac{4}{5}}&{\dfrac{{ - 4}}{5}} \\
{\dfrac{{ - 2}}{5}}&{\dfrac{{10}}{5}}
\end{array}} \right]\]
Solving it further we get:-
\[
\Rightarrow Y = \left[ {\begin{array}{*{20}{c}}
{\dfrac{6}{5} - \dfrac{4}{5}}&{\dfrac{9}{5} - \left( {\dfrac{{ - 4}}{5}} \right)} \\
{\dfrac{{12}}{5} - \left( {\dfrac{{ - 2}}{5}} \right)}&{0 - \left( {\dfrac{{10}}{5}} \right)}
\end{array}} \right] \\
\Rightarrow Y = \left[ {\begin{array}{*{20}{c}}
{\dfrac{2}{5}}&{\dfrac{{13}}{5}} \\
{\dfrac{{14}}{5}}&{\dfrac{{ - 10}}{5}}
\end{array}} \right] \\
\]
Now putting this value in equation 1 we get:-
The equation 1 is given by:-
\[2X + 3Y = P\]
Now putting the known values of Y and P we get:-
\[2X + 3\left[ {\begin{array}{*{20}{c}}
{\dfrac{2}{5}}&{\dfrac{{13}}{5}} \\
{\dfrac{{14}}{5}}&{\dfrac{{ - 10}}{5}}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
2&3 \\
4&0
\end{array}} \right]\]
Now on multiplying by 3 we get:-
\[
2X + \left[ {\begin{array}{*{20}{c}}
{\dfrac{2}{5} \times 3}&{\dfrac{{13}}{5} \times 3} \\
{\dfrac{{14}}{5} \times 3}&{\dfrac{{ - 10}}{5} \times 3}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
2&3 \\
4&0
\end{array}} \right] \\
2X + \left[ {\begin{array}{*{20}{c}}
{\dfrac{6}{5}}&{\dfrac{{39}}{5}} \\
{\dfrac{{42}}{5}}&{\dfrac{{ - 30}}{5}}
\end{array}} \right] = \left[ {\begin{array}{*{20}{c}}
2&3 \\
4&0
\end{array}} \right] \\
\]
Now simplifying for the value of X we get:-
\[
2X = \left[ {\begin{array}{*{20}{c}}
{2 - \dfrac{6}{5}}&{3 - \dfrac{{39}}{5}} \\
{4 - \dfrac{{42}}{5}}&{0 - \dfrac{{30}}{5}}
\end{array}} \right] \\
2X = \left[ {\begin{array}{*{20}{c}}
{\dfrac{{10 - 6}}{5}}&{\dfrac{{15 - 39}}{5}} \\
{\dfrac{{20 - 42}}{5}}&{\dfrac{{ - 30}}{5}}
\end{array}} \right] \\
2X = \left[ {\begin{array}{*{20}{c}}
{\dfrac{4}{5}}&{\dfrac{{ - 24}}{5}} \\
{\dfrac{{ - 22}}{5}}&{\dfrac{{ - 30}}{5}}
\end{array}} \right] \\
\]
Now dividing by 2 we get:-
\[
X = \left[ {\begin{array}{*{20}{c}}
{\dfrac{2}{5}}&{\dfrac{{ - 12}}{5}} \\
{\dfrac{{ - 11}}{5}}&{\dfrac{{ - 15}}{5}}
\end{array}} \right] \\
\Rightarrow X = \left[ {\begin{array}{*{20}{c}}
{\dfrac{2}{5}}&{\dfrac{{ - 12}}{5}} \\
{\dfrac{{ - 11}}{5}}&{ - 3}
\end{array}} \right] \\
\]
Hence,
\[X = \left[ {\begin{array}{*{20}{c}}
{\dfrac{2}{5}}&{\dfrac{{ - 12}}{5}} \\
{\dfrac{{ - 11}}{5}}&{ - 3}
\end{array}} \right]\] and \[Y = \left[ {\begin{array}{*{20}{c}}
{\dfrac{2}{5}}&{\dfrac{{13}}{5}} \\
{\dfrac{{14}}{5}}&{\dfrac{{ - 10}}{5}}
\end{array}} \right]\]
Note:Students should note that when a matrix is multiplied by a scalar then every term inside the matrix gets multiplied by that scalar.Also, students should carefully calculate the values and use the elimination method to solve the equations.
Recently Updated Pages
Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Class 10 Question and Answer - Your Ultimate Solutions Guide

Master Class 12 Biology: Engaging Questions & Answers for Success

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

The aviation fuel used in the engines of jet airplanes class 10 physics CBSE

What is the scientific name of apple class 10 biology CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Fill the blanks with proper collective nouns 1 A of class 10 english CBSE

Write examples of herbivores carnivores and omnivo class 10 biology CBSE
