Find the value of trigonometric equation ${\text{3cose}}{{\text{c}}^2}\left( {{{60}^0}} \right) - 2{\cot ^2}\left( {{{30}^0}} \right) + {\sec ^2}\left( {{{45}^0}} \right)$.
Answer
Verified
503.7k+ views
Hint: In this question, we use trigonometric values to solve problems. Like ${\text{cosec}}\left( {{{60}^0}} \right) = \dfrac{2}{{\sqrt 3 }},\cot \left( {{{30}^0}} \right) = \sqrt 3 $ and $\sec \left( {{{45}^0}} \right) = \sqrt 2$ put these trigonometric values in question and after some calculation we can get the required answer.
Complete step-by-step answer:
Given, ${\text{3cose}}{{\text{c}}^2}\left( {{{60}^0}} \right) - 2{\cot ^2}\left( {{{30}^0}} \right) + {\sec ^2}\left( {{{45}^0}} \right)$
As we know the some standard values of trigonometric angles,
${\text{cosec}}\left( {{{60}^0}} \right) = \dfrac{2}{{\sqrt 3 }},\cot \left( {{{30}^0}} \right) = \sqrt 3 $ and $\sec \left( {{{45}^0}} \right) = \sqrt 2 $
Put these trigonometric values in ${\text{3cose}}{{\text{c}}^2}\left( {{{60}^0}} \right) - 2{\cot ^2}\left( {{{30}^0}} \right) + {\sec ^2}\left( {{{45}^0}} \right)$
\[ \Rightarrow 3 \times {\left( {\dfrac{2}{{\sqrt 3 }}} \right)^2} - 2 \times {\left( {\sqrt 3 } \right)^2} + {\left( {\sqrt 2 } \right)^2}\]
Square the following values,
\[
\Rightarrow 3 \times \dfrac{4}{3} - 2 \times 3 + 2 \\
\Rightarrow 4 - 6 + 2 \\
\Rightarrow 6 - 6 \\
\Rightarrow 0 \\
\]
So, the value of ${\text{3cose}}{{\text{c}}^2}\left( {{{60}^0}} \right) - 2{\cot ^2}\left( {{{30}^0}} \right) + {\sec ^2}\left( {{{45}^0}} \right)$ is 0.
Note: Whenever we face such types of problems we use some important points. First we write the all values of trigonometric angles should be used in question, then put all trigonometric values in question. So, after some calculation we will get the required answer.
Complete step-by-step answer:
Given, ${\text{3cose}}{{\text{c}}^2}\left( {{{60}^0}} \right) - 2{\cot ^2}\left( {{{30}^0}} \right) + {\sec ^2}\left( {{{45}^0}} \right)$
As we know the some standard values of trigonometric angles,
${\text{cosec}}\left( {{{60}^0}} \right) = \dfrac{2}{{\sqrt 3 }},\cot \left( {{{30}^0}} \right) = \sqrt 3 $ and $\sec \left( {{{45}^0}} \right) = \sqrt 2 $
Put these trigonometric values in ${\text{3cose}}{{\text{c}}^2}\left( {{{60}^0}} \right) - 2{\cot ^2}\left( {{{30}^0}} \right) + {\sec ^2}\left( {{{45}^0}} \right)$
\[ \Rightarrow 3 \times {\left( {\dfrac{2}{{\sqrt 3 }}} \right)^2} - 2 \times {\left( {\sqrt 3 } \right)^2} + {\left( {\sqrt 2 } \right)^2}\]
Square the following values,
\[
\Rightarrow 3 \times \dfrac{4}{3} - 2 \times 3 + 2 \\
\Rightarrow 4 - 6 + 2 \\
\Rightarrow 6 - 6 \\
\Rightarrow 0 \\
\]
So, the value of ${\text{3cose}}{{\text{c}}^2}\left( {{{60}^0}} \right) - 2{\cot ^2}\left( {{{30}^0}} \right) + {\sec ^2}\left( {{{45}^0}} \right)$ is 0.
Note: Whenever we face such types of problems we use some important points. First we write the all values of trigonometric angles should be used in question, then put all trigonometric values in question. So, after some calculation we will get the required answer.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success
Master Class 10 Computer Science: Engaging Questions & Answers for Success
Master Class 10 Science: Engaging Questions & Answers for Success
Master Class 10 Social Science: Engaging Questions & Answers for Success
Master Class 10 Maths: Engaging Questions & Answers for Success
Master Class 10 English: Engaging Questions & Answers for Success
Trending doubts
Assertion The planet Neptune appears blue in colour class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The term disaster is derived from language AGreek BArabic class 10 social science CBSE
Imagine that you have the opportunity to interview class 10 english CBSE
10 examples of evaporation in daily life with explanations
Differentiate between natural and artificial ecosy class 10 biology CBSE