
Find the value of these trigonometric quantities:
\[
{\text{(i) }}\sin {60^0}\cos {30^0} + \sin {360^0}\cos {60^0} \\
{\text{(ii) 2}}{\left( {{\text{tan}}{{45}^0}} \right)^2} + {\left( {\cos {{30}^0}} \right)^2} - {\left( {\sin {{60}^0}} \right)^2} \\
{\text{(iii) }}\dfrac{{\cos {{45}^0}}}{{\sec {{30}^0} + {\text{cosec}}{{30}^0}}} \\
{\text{(iv) }}\dfrac{{\sin {{30}^0} + \tan {{45}^0} - {\text{cosec}}{{60}^0}}}{{\sec {{30}^0} + \cos {{60}^0} + \cot {{45}^0}}} \\
{\text{(v) }}\dfrac{{5{{\left( {\cos {{60}^0}} \right)}^2} + 4{{\left( {\sec {{30}^0}} \right)}^2} - {{\left( {\tan {{45}^0}} \right)}^2}}}{{{{\left( {\sin {{30}^0}} \right)}^2} + {{\left( {\cos {{30}^0}} \right)}^2}}} \\
\]
Answer
606.9k+ views
Hint: Here, we will be using a trigonometric table for the known values of the trigonometric functions corresponding to some angles.
Complete step-by-step answer:
Since, we know all the values for these predefined trigonometric functions used. Hence, by substituting we will get
\[
{\text{(i) }}\sin {60^0}\cos {30^0} + \sin {360^0}\cos {60^0} = \dfrac{{\sqrt 3 }}{2} \times \dfrac{{\sqrt 3 }}{2} + 0 \times \dfrac{1}{2} = \dfrac{3}{4} + 0 = \dfrac{3}{4}. \\
{\text{(ii) 2}}{\left( {{\text{tan}}{{45}^0}} \right)^2} + {\left( {\cos {{30}^0}} \right)^2} - {\left( {\sin {{60}^0}} \right)^2} = 2 \times {1^2} + {\left( {\dfrac{{\sqrt 3 }}{2}} \right)^2} - {\left( {\dfrac{{\sqrt 3 }}{2}} \right)^2} = 2. \\
{\text{(iii) }}\dfrac{{\cos {{45}^0}}}{{\sec {{30}^0} + {\text{cosec}}{{30}^0}}} = \dfrac{{\dfrac{1}{{\sqrt 2 }}}}{{\dfrac{2}{{\sqrt 3 }} + 2}} = \dfrac{{\dfrac{1}{{\sqrt 2 }}}}{{\dfrac{{2 + 2\sqrt 3 }}{{\sqrt 3 }}}} = \dfrac{{\sqrt 3 }}{{2\sqrt 2 \left( {1 + \sqrt 3 } \right)}}. \\
{\text{(iv) }}\dfrac{{\sin {{30}^0} + \tan {{45}^0} - {\text{cosec}}{{60}^0}}}{{\sec {{30}^0} + \cos {{60}^0} + \cot {{45}^0}}} = \dfrac{{\dfrac{1}{2} + 1 - \dfrac{2}{{\sqrt 3 }}}}{{\dfrac{2}{{\sqrt 3 }} + \dfrac{1}{2} + 1}} = \dfrac{{\dfrac{{\sqrt 3 + 2\sqrt 3 - 4}}{{2\sqrt 3 }}}}{{\dfrac{{4 + \sqrt 3 + 2\sqrt 3 }}{{2\sqrt 3 }}}} = \dfrac{{3\sqrt 3 - 4}}{{3\sqrt 3 + 4}}. \\
{\text{(v) }}\dfrac{{5{{\left( {\cos {{60}^0}} \right)}^2} + 4{{\left( {\sec {{30}^0}} \right)}^2} - {{\left( {\tan {{45}^0}} \right)}^2}}}{{{{\left( {\sin {{30}^0}} \right)}^2} + {{\left( {\cos {{30}^0}} \right)}^2}}} = \dfrac{{5 \times {{\left( {\dfrac{1}{2}} \right)}^2} + 4 \times {{\left( {\dfrac{2}{{\sqrt 3 }}} \right)}^2} - {1^2}}}{{{{\left( {\dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}^2}}} = \dfrac{{5 \times \left( {\dfrac{1}{4}} \right) + 4 \times \left( {\dfrac{4}{3}} \right) - 1}}{{\dfrac{1}{4} + \dfrac{3}{4}}} \\
= \dfrac{{\dfrac{5}{4} + \dfrac{{16}}{3} - 1}}{{\dfrac{4}{4}}} = \dfrac{{\dfrac{{15 + 64 - 12}}{{12}}}}{1} = \dfrac{{67}}{{12}}. \\
\]
Note: These types of problems are easily solved by substituting the values of the trigonometric functions at some predefined angles which are taken from the trigonometric table.
Complete step-by-step answer:
Since, we know all the values for these predefined trigonometric functions used. Hence, by substituting we will get
\[
{\text{(i) }}\sin {60^0}\cos {30^0} + \sin {360^0}\cos {60^0} = \dfrac{{\sqrt 3 }}{2} \times \dfrac{{\sqrt 3 }}{2} + 0 \times \dfrac{1}{2} = \dfrac{3}{4} + 0 = \dfrac{3}{4}. \\
{\text{(ii) 2}}{\left( {{\text{tan}}{{45}^0}} \right)^2} + {\left( {\cos {{30}^0}} \right)^2} - {\left( {\sin {{60}^0}} \right)^2} = 2 \times {1^2} + {\left( {\dfrac{{\sqrt 3 }}{2}} \right)^2} - {\left( {\dfrac{{\sqrt 3 }}{2}} \right)^2} = 2. \\
{\text{(iii) }}\dfrac{{\cos {{45}^0}}}{{\sec {{30}^0} + {\text{cosec}}{{30}^0}}} = \dfrac{{\dfrac{1}{{\sqrt 2 }}}}{{\dfrac{2}{{\sqrt 3 }} + 2}} = \dfrac{{\dfrac{1}{{\sqrt 2 }}}}{{\dfrac{{2 + 2\sqrt 3 }}{{\sqrt 3 }}}} = \dfrac{{\sqrt 3 }}{{2\sqrt 2 \left( {1 + \sqrt 3 } \right)}}. \\
{\text{(iv) }}\dfrac{{\sin {{30}^0} + \tan {{45}^0} - {\text{cosec}}{{60}^0}}}{{\sec {{30}^0} + \cos {{60}^0} + \cot {{45}^0}}} = \dfrac{{\dfrac{1}{2} + 1 - \dfrac{2}{{\sqrt 3 }}}}{{\dfrac{2}{{\sqrt 3 }} + \dfrac{1}{2} + 1}} = \dfrac{{\dfrac{{\sqrt 3 + 2\sqrt 3 - 4}}{{2\sqrt 3 }}}}{{\dfrac{{4 + \sqrt 3 + 2\sqrt 3 }}{{2\sqrt 3 }}}} = \dfrac{{3\sqrt 3 - 4}}{{3\sqrt 3 + 4}}. \\
{\text{(v) }}\dfrac{{5{{\left( {\cos {{60}^0}} \right)}^2} + 4{{\left( {\sec {{30}^0}} \right)}^2} - {{\left( {\tan {{45}^0}} \right)}^2}}}{{{{\left( {\sin {{30}^0}} \right)}^2} + {{\left( {\cos {{30}^0}} \right)}^2}}} = \dfrac{{5 \times {{\left( {\dfrac{1}{2}} \right)}^2} + 4 \times {{\left( {\dfrac{2}{{\sqrt 3 }}} \right)}^2} - {1^2}}}{{{{\left( {\dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}^2}}} = \dfrac{{5 \times \left( {\dfrac{1}{4}} \right) + 4 \times \left( {\dfrac{4}{3}} \right) - 1}}{{\dfrac{1}{4} + \dfrac{3}{4}}} \\
= \dfrac{{\dfrac{5}{4} + \dfrac{{16}}{3} - 1}}{{\dfrac{4}{4}}} = \dfrac{{\dfrac{{15 + 64 - 12}}{{12}}}}{1} = \dfrac{{67}}{{12}}. \\
\]
Note: These types of problems are easily solved by substituting the values of the trigonometric functions at some predefined angles which are taken from the trigonometric table.
Recently Updated Pages
Fill in the blanks with the most suitable articles class 10 english CBSE

How baking powder is formed class 10 chemistry CBSE

Which of the following countries has direct democracy class 10 social science CBSE

A military tent is in the form of a right circular class 10 maths CBSE

The exact composition of Brass is Options ACu 80 Zn class 10 chemistry CBSE

Find the sum of series 1 3 5 7 9 up to n terms class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

