
Find the value of these trigonometric quantities:
\[
{\text{(i) }}\sin {60^0}\cos {30^0} + \sin {360^0}\cos {60^0} \\
{\text{(ii) 2}}{\left( {{\text{tan}}{{45}^0}} \right)^2} + {\left( {\cos {{30}^0}} \right)^2} - {\left( {\sin {{60}^0}} \right)^2} \\
{\text{(iii) }}\dfrac{{\cos {{45}^0}}}{{\sec {{30}^0} + {\text{cosec}}{{30}^0}}} \\
{\text{(iv) }}\dfrac{{\sin {{30}^0} + \tan {{45}^0} - {\text{cosec}}{{60}^0}}}{{\sec {{30}^0} + \cos {{60}^0} + \cot {{45}^0}}} \\
{\text{(v) }}\dfrac{{5{{\left( {\cos {{60}^0}} \right)}^2} + 4{{\left( {\sec {{30}^0}} \right)}^2} - {{\left( {\tan {{45}^0}} \right)}^2}}}{{{{\left( {\sin {{30}^0}} \right)}^2} + {{\left( {\cos {{30}^0}} \right)}^2}}} \\
\]
Answer
621k+ views
Hint: Here, we will be using a trigonometric table for the known values of the trigonometric functions corresponding to some angles.
Complete step-by-step answer:
Since, we know all the values for these predefined trigonometric functions used. Hence, by substituting we will get
\[
{\text{(i) }}\sin {60^0}\cos {30^0} + \sin {360^0}\cos {60^0} = \dfrac{{\sqrt 3 }}{2} \times \dfrac{{\sqrt 3 }}{2} + 0 \times \dfrac{1}{2} = \dfrac{3}{4} + 0 = \dfrac{3}{4}. \\
{\text{(ii) 2}}{\left( {{\text{tan}}{{45}^0}} \right)^2} + {\left( {\cos {{30}^0}} \right)^2} - {\left( {\sin {{60}^0}} \right)^2} = 2 \times {1^2} + {\left( {\dfrac{{\sqrt 3 }}{2}} \right)^2} - {\left( {\dfrac{{\sqrt 3 }}{2}} \right)^2} = 2. \\
{\text{(iii) }}\dfrac{{\cos {{45}^0}}}{{\sec {{30}^0} + {\text{cosec}}{{30}^0}}} = \dfrac{{\dfrac{1}{{\sqrt 2 }}}}{{\dfrac{2}{{\sqrt 3 }} + 2}} = \dfrac{{\dfrac{1}{{\sqrt 2 }}}}{{\dfrac{{2 + 2\sqrt 3 }}{{\sqrt 3 }}}} = \dfrac{{\sqrt 3 }}{{2\sqrt 2 \left( {1 + \sqrt 3 } \right)}}. \\
{\text{(iv) }}\dfrac{{\sin {{30}^0} + \tan {{45}^0} - {\text{cosec}}{{60}^0}}}{{\sec {{30}^0} + \cos {{60}^0} + \cot {{45}^0}}} = \dfrac{{\dfrac{1}{2} + 1 - \dfrac{2}{{\sqrt 3 }}}}{{\dfrac{2}{{\sqrt 3 }} + \dfrac{1}{2} + 1}} = \dfrac{{\dfrac{{\sqrt 3 + 2\sqrt 3 - 4}}{{2\sqrt 3 }}}}{{\dfrac{{4 + \sqrt 3 + 2\sqrt 3 }}{{2\sqrt 3 }}}} = \dfrac{{3\sqrt 3 - 4}}{{3\sqrt 3 + 4}}. \\
{\text{(v) }}\dfrac{{5{{\left( {\cos {{60}^0}} \right)}^2} + 4{{\left( {\sec {{30}^0}} \right)}^2} - {{\left( {\tan {{45}^0}} \right)}^2}}}{{{{\left( {\sin {{30}^0}} \right)}^2} + {{\left( {\cos {{30}^0}} \right)}^2}}} = \dfrac{{5 \times {{\left( {\dfrac{1}{2}} \right)}^2} + 4 \times {{\left( {\dfrac{2}{{\sqrt 3 }}} \right)}^2} - {1^2}}}{{{{\left( {\dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}^2}}} = \dfrac{{5 \times \left( {\dfrac{1}{4}} \right) + 4 \times \left( {\dfrac{4}{3}} \right) - 1}}{{\dfrac{1}{4} + \dfrac{3}{4}}} \\
= \dfrac{{\dfrac{5}{4} + \dfrac{{16}}{3} - 1}}{{\dfrac{4}{4}}} = \dfrac{{\dfrac{{15 + 64 - 12}}{{12}}}}{1} = \dfrac{{67}}{{12}}. \\
\]
Note: These types of problems are easily solved by substituting the values of the trigonometric functions at some predefined angles which are taken from the trigonometric table.
Complete step-by-step answer:
Since, we know all the values for these predefined trigonometric functions used. Hence, by substituting we will get
\[
{\text{(i) }}\sin {60^0}\cos {30^0} + \sin {360^0}\cos {60^0} = \dfrac{{\sqrt 3 }}{2} \times \dfrac{{\sqrt 3 }}{2} + 0 \times \dfrac{1}{2} = \dfrac{3}{4} + 0 = \dfrac{3}{4}. \\
{\text{(ii) 2}}{\left( {{\text{tan}}{{45}^0}} \right)^2} + {\left( {\cos {{30}^0}} \right)^2} - {\left( {\sin {{60}^0}} \right)^2} = 2 \times {1^2} + {\left( {\dfrac{{\sqrt 3 }}{2}} \right)^2} - {\left( {\dfrac{{\sqrt 3 }}{2}} \right)^2} = 2. \\
{\text{(iii) }}\dfrac{{\cos {{45}^0}}}{{\sec {{30}^0} + {\text{cosec}}{{30}^0}}} = \dfrac{{\dfrac{1}{{\sqrt 2 }}}}{{\dfrac{2}{{\sqrt 3 }} + 2}} = \dfrac{{\dfrac{1}{{\sqrt 2 }}}}{{\dfrac{{2 + 2\sqrt 3 }}{{\sqrt 3 }}}} = \dfrac{{\sqrt 3 }}{{2\sqrt 2 \left( {1 + \sqrt 3 } \right)}}. \\
{\text{(iv) }}\dfrac{{\sin {{30}^0} + \tan {{45}^0} - {\text{cosec}}{{60}^0}}}{{\sec {{30}^0} + \cos {{60}^0} + \cot {{45}^0}}} = \dfrac{{\dfrac{1}{2} + 1 - \dfrac{2}{{\sqrt 3 }}}}{{\dfrac{2}{{\sqrt 3 }} + \dfrac{1}{2} + 1}} = \dfrac{{\dfrac{{\sqrt 3 + 2\sqrt 3 - 4}}{{2\sqrt 3 }}}}{{\dfrac{{4 + \sqrt 3 + 2\sqrt 3 }}{{2\sqrt 3 }}}} = \dfrac{{3\sqrt 3 - 4}}{{3\sqrt 3 + 4}}. \\
{\text{(v) }}\dfrac{{5{{\left( {\cos {{60}^0}} \right)}^2} + 4{{\left( {\sec {{30}^0}} \right)}^2} - {{\left( {\tan {{45}^0}} \right)}^2}}}{{{{\left( {\sin {{30}^0}} \right)}^2} + {{\left( {\cos {{30}^0}} \right)}^2}}} = \dfrac{{5 \times {{\left( {\dfrac{1}{2}} \right)}^2} + 4 \times {{\left( {\dfrac{2}{{\sqrt 3 }}} \right)}^2} - {1^2}}}{{{{\left( {\dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{{\sqrt 3 }}{2}} \right)}^2}}} = \dfrac{{5 \times \left( {\dfrac{1}{4}} \right) + 4 \times \left( {\dfrac{4}{3}} \right) - 1}}{{\dfrac{1}{4} + \dfrac{3}{4}}} \\
= \dfrac{{\dfrac{5}{4} + \dfrac{{16}}{3} - 1}}{{\dfrac{4}{4}}} = \dfrac{{\dfrac{{15 + 64 - 12}}{{12}}}}{1} = \dfrac{{67}}{{12}}. \\
\]
Note: These types of problems are easily solved by substituting the values of the trigonometric functions at some predefined angles which are taken from the trigonometric table.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

