
Find the value of the middle most term(s) of the A.P. -11, -7, -3, ……., 49.
Answer
579.6k+ views
Hint: First we need to find out the position of the last term of the given A.P. i.e. 49 using the formula $ {{a}_{n}}=a+(n-1)d $ where a is first term, d is the common difference of the A.P. and $ {{a}_{n}}=49 $. Suppose 49 is at $ {{n}^{th}} $ position in the A.P. then, if n is even then middle terms of the A.P. will be $ \dfrac{n}{2},\dfrac{n}{2}+1 $ and if n comes out to be an odd number then middle term will be $ \dfrac{n+1}{2} $. After that we will find the value of the middle term using the same formula.
Complete step-by-step answer:
First we need to find out the position of the last term of the given A.P. i.e. 49 using the formula $ {{a}_{n}}=a+(n-1)d $ , where
a is first term,
d is the common difference of the A.P. i.e. = - 7- (-11) = 4,
$ {{a}_{n}}=49 $ .
So by applying the formula and putting the required values in it, we get
49 = - 11 + (n-1) $ \times $ 4
After further simplifying, we get
$ n-1=\dfrac{49+11}{4} $
$ \begin{align}
& n-1=\dfrac{60}{4} \\
& n-1=15 \\
& n=16 \\
\end{align} $
Hence 49 is at the $ {{16}^{th}} $ place in the given A.P.
And we know that 16 is an even number so we will get two terms in the middle of the A.P. and their position will be $ \dfrac{n}{2},\dfrac{n}{2}+1 $ where n = 16,
So now we get,
$ \dfrac{16}{2},\dfrac{16}{2}+1 $ as our middle most terms i.e. $ {{8}^{th}}\,and\,{{9}^{th}} $ term of the A.P.
We will find the values of $ {{8}^{th}}\,and\,{{9}^{th}} $ terms of the A.P.
$ {{8}^{th}} $ term of the A.P. is given by,
\[\begin{align}
& {{a}_{8}}=-11+(8-1)\times 4 \\
& {{a}_{8}}=-11+7\times 4 \\
& {{a}_{8}}=-11+28 \\
& {{a}_{8}}=17 \\
\end{align}\]
Now we will find the $ {{9}^{th}} $ term of the A.P.
$ \begin{align}
& {{a}_{9}}=-11+(9-1)\times 4 \\
& {{a}_{9}}=-11+8\times 4 \\
& {{a}_{9}}=-11+32 \\
& {{a}_{9}}=21 \\
\end{align} $
Hence, value(s) of the middle most terms of the given A.P. are 17 and 21
Note: You need to remember whenever there are even numbers of terms then there will be two middle terms and when there are a middle number of terms there is only one middle term. And also remember the formula that $ {{n}^{th}} $ term of the A.P. is given by $ {{a}_{n}}=a+(n-1)d $ where a is first term and d is common difference of the A.P.
Complete step-by-step answer:
First we need to find out the position of the last term of the given A.P. i.e. 49 using the formula $ {{a}_{n}}=a+(n-1)d $ , where
a is first term,
d is the common difference of the A.P. i.e. = - 7- (-11) = 4,
$ {{a}_{n}}=49 $ .
So by applying the formula and putting the required values in it, we get
49 = - 11 + (n-1) $ \times $ 4
After further simplifying, we get
$ n-1=\dfrac{49+11}{4} $
$ \begin{align}
& n-1=\dfrac{60}{4} \\
& n-1=15 \\
& n=16 \\
\end{align} $
Hence 49 is at the $ {{16}^{th}} $ place in the given A.P.
And we know that 16 is an even number so we will get two terms in the middle of the A.P. and their position will be $ \dfrac{n}{2},\dfrac{n}{2}+1 $ where n = 16,
So now we get,
$ \dfrac{16}{2},\dfrac{16}{2}+1 $ as our middle most terms i.e. $ {{8}^{th}}\,and\,{{9}^{th}} $ term of the A.P.
We will find the values of $ {{8}^{th}}\,and\,{{9}^{th}} $ terms of the A.P.
$ {{8}^{th}} $ term of the A.P. is given by,
\[\begin{align}
& {{a}_{8}}=-11+(8-1)\times 4 \\
& {{a}_{8}}=-11+7\times 4 \\
& {{a}_{8}}=-11+28 \\
& {{a}_{8}}=17 \\
\end{align}\]
Now we will find the $ {{9}^{th}} $ term of the A.P.
$ \begin{align}
& {{a}_{9}}=-11+(9-1)\times 4 \\
& {{a}_{9}}=-11+8\times 4 \\
& {{a}_{9}}=-11+32 \\
& {{a}_{9}}=21 \\
\end{align} $
Hence, value(s) of the middle most terms of the given A.P. are 17 and 21
Note: You need to remember whenever there are even numbers of terms then there will be two middle terms and when there are a middle number of terms there is only one middle term. And also remember the formula that $ {{n}^{th}} $ term of the A.P. is given by $ {{a}_{n}}=a+(n-1)d $ where a is first term and d is common difference of the A.P.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

