Find the value of the middle most term(s) of the A.P. -11, -7, -3, ……., 49.
Answer
202.5k+ views
Hint: First we need to find out the position of the last term of the given A.P. i.e. 49 using the formula $ {{a}_{n}}=a+(n-1)d $ where a is first term, d is the common difference of the A.P. and $ {{a}_{n}}=49 $. Suppose 49 is at $ {{n}^{th}} $ position in the A.P. then, if n is even then middle terms of the A.P. will be $ \dfrac{n}{2},\dfrac{n}{2}+1 $ and if n comes out to be an odd number then middle term will be $ \dfrac{n+1}{2} $. After that we will find the value of the middle term using the same formula.
Complete step-by-step answer:
First we need to find out the position of the last term of the given A.P. i.e. 49 using the formula $ {{a}_{n}}=a+(n-1)d $ , where
a is first term,
d is the common difference of the A.P. i.e. = - 7- (-11) = 4,
$ {{a}_{n}}=49 $ .
So by applying the formula and putting the required values in it, we get
49 = - 11 + (n-1) $ \times $ 4
After further simplifying, we get
$ n-1=\dfrac{49+11}{4} $
$ \begin{align}
& n-1=\dfrac{60}{4} \\
& n-1=15 \\
& n=16 \\
\end{align} $
Hence 49 is at the $ {{16}^{th}} $ place in the given A.P.
And we know that 16 is an even number so we will get two terms in the middle of the A.P. and their position will be $ \dfrac{n}{2},\dfrac{n}{2}+1 $ where n = 16,
So now we get,
$ \dfrac{16}{2},\dfrac{16}{2}+1 $ as our middle most terms i.e. $ {{8}^{th}}\,and\,{{9}^{th}} $ term of the A.P.
We will find the values of $ {{8}^{th}}\,and\,{{9}^{th}} $ terms of the A.P.
$ {{8}^{th}} $ term of the A.P. is given by,
\[\begin{align}
& {{a}_{8}}=-11+(8-1)\times 4 \\
& {{a}_{8}}=-11+7\times 4 \\
& {{a}_{8}}=-11+28 \\
& {{a}_{8}}=17 \\
\end{align}\]
Now we will find the $ {{9}^{th}} $ term of the A.P.
$ \begin{align}
& {{a}_{9}}=-11+(9-1)\times 4 \\
& {{a}_{9}}=-11+8\times 4 \\
& {{a}_{9}}=-11+32 \\
& {{a}_{9}}=21 \\
\end{align} $
Hence, value(s) of the middle most terms of the given A.P. are 17 and 21
Note: You need to remember whenever there are even numbers of terms then there will be two middle terms and when there are a middle number of terms there is only one middle term. And also remember the formula that $ {{n}^{th}} $ term of the A.P. is given by $ {{a}_{n}}=a+(n-1)d $ where a is first term and d is common difference of the A.P.
Complete step-by-step answer:
First we need to find out the position of the last term of the given A.P. i.e. 49 using the formula $ {{a}_{n}}=a+(n-1)d $ , where
a is first term,
d is the common difference of the A.P. i.e. = - 7- (-11) = 4,
$ {{a}_{n}}=49 $ .
So by applying the formula and putting the required values in it, we get
49 = - 11 + (n-1) $ \times $ 4
After further simplifying, we get
$ n-1=\dfrac{49+11}{4} $
$ \begin{align}
& n-1=\dfrac{60}{4} \\
& n-1=15 \\
& n=16 \\
\end{align} $
Hence 49 is at the $ {{16}^{th}} $ place in the given A.P.
And we know that 16 is an even number so we will get two terms in the middle of the A.P. and their position will be $ \dfrac{n}{2},\dfrac{n}{2}+1 $ where n = 16,
So now we get,
$ \dfrac{16}{2},\dfrac{16}{2}+1 $ as our middle most terms i.e. $ {{8}^{th}}\,and\,{{9}^{th}} $ term of the A.P.
We will find the values of $ {{8}^{th}}\,and\,{{9}^{th}} $ terms of the A.P.
$ {{8}^{th}} $ term of the A.P. is given by,
\[\begin{align}
& {{a}_{8}}=-11+(8-1)\times 4 \\
& {{a}_{8}}=-11+7\times 4 \\
& {{a}_{8}}=-11+28 \\
& {{a}_{8}}=17 \\
\end{align}\]
Now we will find the $ {{9}^{th}} $ term of the A.P.
$ \begin{align}
& {{a}_{9}}=-11+(9-1)\times 4 \\
& {{a}_{9}}=-11+8\times 4 \\
& {{a}_{9}}=-11+32 \\
& {{a}_{9}}=21 \\
\end{align} $
Hence, value(s) of the middle most terms of the given A.P. are 17 and 21
Note: You need to remember whenever there are even numbers of terms then there will be two middle terms and when there are a middle number of terms there is only one middle term. And also remember the formula that $ {{n}^{th}} $ term of the A.P. is given by $ {{a}_{n}}=a+(n-1)d $ where a is first term and d is common difference of the A.P.
Recently Updated Pages
The number of ways in which 20 onerupee coins can be class 5 maths CBSE

Solve the following systems of equations 23x 29y 98 class 10 maths CBSE

Let omega eidfracpi 3 and abcxyz be nonzero complex class 10 maths CBSE

If p3 qleft 3p 1 right + q2 0 find the relation between class 10 maths CBSE

Draw an octagon using a set square with 4 right an class 10 maths CBSE

The hypotenuse of a right triangle is 17 cm long Another class 10 maths CBSE

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE
