Find the value of the following trigonometric equation.
\[{\text{cos 2}}{{\text{0}}^{\text{0}}}{\text{ + cos 10}}{{\text{0}}^{\text{0}}}{\text{ + cos 14}}{{\text{0}}^{\text{0}}}\]
Last updated date: 25th Mar 2023
•
Total views: 307.2k
•
Views today: 5.87k
Answer
307.2k+ views
Hint: Let us apply the trigonometric identity for cos A + cos B. So, that above equation can be reduced into a product of trigonometric functions.
Now to find the value of the given trigonometric equation first we will apply a trigonometric formula to find the sum of cosines of two angles.
Complete step-by-step answer:
As we know that if A and B are some angles, then cos A + cos B = 2cos\[\left( {\dfrac{{{\text{A + B}}}}{{\text{2}}}} \right)\] cos\[\left( {\dfrac{{{\text{A - B}}}}{{\text{2}}}} \right)\].
So, if A = \[{\text{10}}{{\text{0}}^{\text{0}}}\] and B = \[{\text{2}}{{\text{0}}^{\text{0}}}\].
Then the given equation becomes,
$\Rightarrow$ \[\left( {{\text{cos 10}}{{\text{0}}^{\text{0}}}{\text{ + cos 2}}{{\text{0}}^{\text{0}}}} \right){\text{ + cos 14}}{{\text{0}}^{\text{0}}}{\text{ = }}\left( {{\text{2cos}}\left( {\dfrac{{{\text{10}}{{\text{0}}^0}{\text{ + 2}}{{\text{0}}^0}}}{{\text{2}}}} \right){\text{ cos}}\left( {\dfrac{{{\text{10}}{{\text{0}}^0}{\text{ - 2}}{{\text{0}}^0}}}{{\text{2}}}} \right)} \right){\text{ + cos 14}}{{\text{0}}^{\text{0}}}\] ___________(1)
On solving equation 1. We get,
$\Rightarrow$ \[\left( {{\text{cos 10}}{{\text{0}}^{\text{0}}}{\text{ + cos 2}}{{\text{0}}^{\text{0}}}} \right){\text{ + cos 14}}{{\text{0}}^{\text{0}}}{\text{ = 2}}\left( {{\text{cos 6}}{{\text{0}}^{\text{0}}}} \right)\left( {{\text{cos 4}}{{\text{0}}^{\text{0}}}} \right){\text{ + cos 14}}{{\text{0}}^{\text{0}}}\] _________________________ (2)
Now as we know that \[{\text{cos 6}}{{\text{0}}^{\text{0}}}\] = \[\dfrac{{\text{1}}}{{\text{2}}}\].
So, equation 2 becomes,
$\Rightarrow$ \[\left( {{\text{cos 10}}{{\text{0}}^{\text{0}}}{\text{ + cos 2}}{{\text{0}}^{\text{0}}}} \right){\text{ + cos 14}}{{\text{0}}^{\text{0}}}{\text{ = 2}}\left( {\dfrac{{\text{1}}}{{\text{2}}}} \right)\left( {{\text{cos 4}}{{\text{0}}^{\text{0}}}} \right){\text{ + cos 14}}{{\text{0}}^{\text{0}}}\]
$\Rightarrow$ \[\left( {{\text{cos 10}}{{\text{0}}^{\text{0}}}{\text{ + cos 2}}{{\text{0}}^{\text{0}}}} \right){\text{ + cos 14}}{{\text{0}}^{\text{0}}}{\text{ = cos 4}}{{\text{0}}^{\text{0}}}{\text{ + cos 14}}{{\text{0}}^{\text{0}}}\] ________________________ (3)
Now as we know that to find the value of given equation, we had to find the value of \[{\text{cos 4}}{{\text{0}}^{\text{0}}}{\text{ + cos 14}}{{\text{0}}^{\text{0}}}\].
So, applying the trigonometric identity of cos A + cos B in \[{\text{cos 14}}{{\text{0}}^{\text{0}}}{\text{ + cos 4}}{{\text{0}}^{\text{0}}}\].
So, let A = \[{\text{14}}{{\text{0}}^{\text{0}}}\] and B = \[{\text{4}}{{\text{0}}^{\text{0}}}\].
So, equation 3 becomes,
$\Rightarrow$ \[\left( {{\text{cos 10}}{{\text{0}}^{\text{0}}}{\text{ + cos 2}}{{\text{0}}^{\text{0}}}} \right){\text{ + cos 14}}{{\text{0}}^{\text{0}}}{\text{ = }}\left( {{\text{2cos}}\left( {\dfrac{{{\text{14}}{{\text{0}}^{\text{0}}}{\text{ + 4}}{{\text{0}}^{\text{0}}}}}{{\text{2}}}} \right){\text{ cos}}\left( {\dfrac{{{\text{14}}{{\text{0}}^{\text{0}}}{\text{ - 4}}{{\text{0}}^{\text{0}}}}}{{\text{2}}}} \right)} \right)\]
On solving the above equation. It becomes,
$\Rightarrow$ \[\left( {{\text{cos 10}}{{\text{0}}^{\text{0}}}{\text{ + cos 2}}{{\text{0}}^{\text{0}}}} \right){\text{ + cos 14}}{{\text{0}}^{\text{0}}}{\text{ = 2}}\left( {{\text{cos 9}}{{\text{0}}^{\text{0}}}} \right)\left( {{\text{cos 5}}{{\text{0}}^{\text{0}}}} \right)\] __________________________ (4)
Now as we know that \[{\text{cos 9}}{{\text{0}}^{\text{0}}}\] = 0.
So, equation 4 becomes,
$\Rightarrow$ \[{\text{cos 2}}{{\text{0}}^{\text{0}}}{\text{ + cos 10}}{{\text{0}}^{\text{0}}}{\text{ + cos 14}}{{\text{0}}^{\text{0}}}\] = 0
Hence, \[{\text{cos 2}}{{\text{0}}^{\text{0}}}{\text{ + cos 10}}{{\text{0}}^{\text{0}}}{\text{ + cos 14}}{{\text{0}}^{\text{0}}}\] = 0.
Note: Whenever we come up with this type of problem, where we are asked to find the sum of cosine of three different angles then first, we find the sum of cosine of any two angle from them using trigonometric identity which states that cos A + cos B = 2cos\[\left( {\dfrac{{{\text{A + B}}}}{{\text{2}}}} \right)\] cos\[\left( {\dfrac{{{\text{A - B}}}}{{\text{2}}}} \right)\]. And then we are left to find the sum of the cosine of the third angle and the cosine of angles we got from the previous sum. So, we had to again apply the trigonometric identity of cos A + cos B to get the required value of the given equation.
Now to find the value of the given trigonometric equation first we will apply a trigonometric formula to find the sum of cosines of two angles.
Complete step-by-step answer:
As we know that if A and B are some angles, then cos A + cos B = 2cos\[\left( {\dfrac{{{\text{A + B}}}}{{\text{2}}}} \right)\] cos\[\left( {\dfrac{{{\text{A - B}}}}{{\text{2}}}} \right)\].
So, if A = \[{\text{10}}{{\text{0}}^{\text{0}}}\] and B = \[{\text{2}}{{\text{0}}^{\text{0}}}\].
Then the given equation becomes,
$\Rightarrow$ \[\left( {{\text{cos 10}}{{\text{0}}^{\text{0}}}{\text{ + cos 2}}{{\text{0}}^{\text{0}}}} \right){\text{ + cos 14}}{{\text{0}}^{\text{0}}}{\text{ = }}\left( {{\text{2cos}}\left( {\dfrac{{{\text{10}}{{\text{0}}^0}{\text{ + 2}}{{\text{0}}^0}}}{{\text{2}}}} \right){\text{ cos}}\left( {\dfrac{{{\text{10}}{{\text{0}}^0}{\text{ - 2}}{{\text{0}}^0}}}{{\text{2}}}} \right)} \right){\text{ + cos 14}}{{\text{0}}^{\text{0}}}\] ___________(1)
On solving equation 1. We get,
$\Rightarrow$ \[\left( {{\text{cos 10}}{{\text{0}}^{\text{0}}}{\text{ + cos 2}}{{\text{0}}^{\text{0}}}} \right){\text{ + cos 14}}{{\text{0}}^{\text{0}}}{\text{ = 2}}\left( {{\text{cos 6}}{{\text{0}}^{\text{0}}}} \right)\left( {{\text{cos 4}}{{\text{0}}^{\text{0}}}} \right){\text{ + cos 14}}{{\text{0}}^{\text{0}}}\] _________________________ (2)
Now as we know that \[{\text{cos 6}}{{\text{0}}^{\text{0}}}\] = \[\dfrac{{\text{1}}}{{\text{2}}}\].
So, equation 2 becomes,
$\Rightarrow$ \[\left( {{\text{cos 10}}{{\text{0}}^{\text{0}}}{\text{ + cos 2}}{{\text{0}}^{\text{0}}}} \right){\text{ + cos 14}}{{\text{0}}^{\text{0}}}{\text{ = 2}}\left( {\dfrac{{\text{1}}}{{\text{2}}}} \right)\left( {{\text{cos 4}}{{\text{0}}^{\text{0}}}} \right){\text{ + cos 14}}{{\text{0}}^{\text{0}}}\]
$\Rightarrow$ \[\left( {{\text{cos 10}}{{\text{0}}^{\text{0}}}{\text{ + cos 2}}{{\text{0}}^{\text{0}}}} \right){\text{ + cos 14}}{{\text{0}}^{\text{0}}}{\text{ = cos 4}}{{\text{0}}^{\text{0}}}{\text{ + cos 14}}{{\text{0}}^{\text{0}}}\] ________________________ (3)
Now as we know that to find the value of given equation, we had to find the value of \[{\text{cos 4}}{{\text{0}}^{\text{0}}}{\text{ + cos 14}}{{\text{0}}^{\text{0}}}\].
So, applying the trigonometric identity of cos A + cos B in \[{\text{cos 14}}{{\text{0}}^{\text{0}}}{\text{ + cos 4}}{{\text{0}}^{\text{0}}}\].
So, let A = \[{\text{14}}{{\text{0}}^{\text{0}}}\] and B = \[{\text{4}}{{\text{0}}^{\text{0}}}\].
So, equation 3 becomes,
$\Rightarrow$ \[\left( {{\text{cos 10}}{{\text{0}}^{\text{0}}}{\text{ + cos 2}}{{\text{0}}^{\text{0}}}} \right){\text{ + cos 14}}{{\text{0}}^{\text{0}}}{\text{ = }}\left( {{\text{2cos}}\left( {\dfrac{{{\text{14}}{{\text{0}}^{\text{0}}}{\text{ + 4}}{{\text{0}}^{\text{0}}}}}{{\text{2}}}} \right){\text{ cos}}\left( {\dfrac{{{\text{14}}{{\text{0}}^{\text{0}}}{\text{ - 4}}{{\text{0}}^{\text{0}}}}}{{\text{2}}}} \right)} \right)\]
On solving the above equation. It becomes,
$\Rightarrow$ \[\left( {{\text{cos 10}}{{\text{0}}^{\text{0}}}{\text{ + cos 2}}{{\text{0}}^{\text{0}}}} \right){\text{ + cos 14}}{{\text{0}}^{\text{0}}}{\text{ = 2}}\left( {{\text{cos 9}}{{\text{0}}^{\text{0}}}} \right)\left( {{\text{cos 5}}{{\text{0}}^{\text{0}}}} \right)\] __________________________ (4)
Now as we know that \[{\text{cos 9}}{{\text{0}}^{\text{0}}}\] = 0.
So, equation 4 becomes,
$\Rightarrow$ \[{\text{cos 2}}{{\text{0}}^{\text{0}}}{\text{ + cos 10}}{{\text{0}}^{\text{0}}}{\text{ + cos 14}}{{\text{0}}^{\text{0}}}\] = 0
Hence, \[{\text{cos 2}}{{\text{0}}^{\text{0}}}{\text{ + cos 10}}{{\text{0}}^{\text{0}}}{\text{ + cos 14}}{{\text{0}}^{\text{0}}}\] = 0.
Note: Whenever we come up with this type of problem, where we are asked to find the sum of cosine of three different angles then first, we find the sum of cosine of any two angle from them using trigonometric identity which states that cos A + cos B = 2cos\[\left( {\dfrac{{{\text{A + B}}}}{{\text{2}}}} \right)\] cos\[\left( {\dfrac{{{\text{A - B}}}}{{\text{2}}}} \right)\]. And then we are left to find the sum of the cosine of the third angle and the cosine of angles we got from the previous sum. So, we had to again apply the trigonometric identity of cos A + cos B to get the required value of the given equation.
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE
