
Find the value of $\tan 9^\circ - \tan 27^\circ - \tan 63^\circ + \tan 81^\circ $.
A.-1
B.0
C.1
D.4
Answer
621.6k+ views
Hint: We need to know the formulae of trigonometric functions in different quadrants and basic values of trigonometric functions to solve the given problem.
Given expression is $\tan 9^\circ - \tan 27^\circ - \tan 63^\circ + \tan 81^\circ $
$\left[ {\because \tan \theta = \cot (90 - \theta )} \right]$, So we can write
$ = \tan 9^\circ + \cot 9^\circ - \left( {\tan 27^\circ + \cot 27^\circ } \right)$
$ = \frac{{1 + {{\tan }^2}9^\circ }}{{\tan 9^\circ }} - \frac{{1 + {{\tan }^2}27^\circ }}{{\tan 27^\circ }}$ (+1 and -1 get cancelled out)
$\left[ {\because 1 + {{\tan }^2}\theta = {{\sec }^2}\theta } \right]$
$ = \frac{{{{\sec }^2}9^\circ }}{{\tan 9^\circ }} - \frac{{{{\sec }^2}27^\circ }}{{\tan 27^\circ }}$
We can simply the above expression by writing as
$ = \frac{1}{{\sin 9^\circ \cos 9^\circ }} - \frac{1}{{\sin 27^\circ \cos 27^\circ }}$ $\left[ {\because \sec \theta = \frac{1}{{\cos \theta }}\& \tan \theta = \frac{{\sin \theta }}{{\cos \theta }}} \right]$
Multiplying and dividing the above term with 2
$ = \frac{2}{{\sin 18^\circ }} - \frac{2}{{\sin 54^\circ }}$
$ = \frac{2}{{\frac{{\sqrt 5 - 1}}{4}}} - \frac{2}{{\frac{{\sqrt 5 + 1}}{4}}}$
$ = 8\left( {\frac{1}{{\sqrt 5 - 1}} - \frac{1}{{\sqrt 5 + 1}}} \right)$
$ = 8\left( {\frac{{\sqrt 5 + 1 - \sqrt 5 + 1}}{4}} \right)$
$ = 8\left( {\frac{2}{4}} \right) = 2 \times 2 = 4$
$\therefore $ The value of $\tan 9^\circ - \tan 27^\circ - \tan 63^\circ + \tan 81^\circ $= 4
Note: $81^\circ $ and $63^\circ $ lies in the first quadrant. Here if we observe $81^\circ $ and $9^\circ $ are complementary angles. Similarly $63^\circ $ and $27^\circ $ are complementary angles. Using this idea, we simplified them into a single trigonometric function. The value of $\sin 18^\circ = \frac{{\sqrt 5 - 1}}{4}$ and the value of$\sin 54^\circ = \frac{{\sqrt 5 + 1}}{4}$.
Given expression is $\tan 9^\circ - \tan 27^\circ - \tan 63^\circ + \tan 81^\circ $
$\left[ {\because \tan \theta = \cot (90 - \theta )} \right]$, So we can write
$ = \tan 9^\circ + \cot 9^\circ - \left( {\tan 27^\circ + \cot 27^\circ } \right)$
$ = \frac{{1 + {{\tan }^2}9^\circ }}{{\tan 9^\circ }} - \frac{{1 + {{\tan }^2}27^\circ }}{{\tan 27^\circ }}$ (+1 and -1 get cancelled out)
$\left[ {\because 1 + {{\tan }^2}\theta = {{\sec }^2}\theta } \right]$
$ = \frac{{{{\sec }^2}9^\circ }}{{\tan 9^\circ }} - \frac{{{{\sec }^2}27^\circ }}{{\tan 27^\circ }}$
We can simply the above expression by writing as
$ = \frac{1}{{\sin 9^\circ \cos 9^\circ }} - \frac{1}{{\sin 27^\circ \cos 27^\circ }}$ $\left[ {\because \sec \theta = \frac{1}{{\cos \theta }}\& \tan \theta = \frac{{\sin \theta }}{{\cos \theta }}} \right]$
Multiplying and dividing the above term with 2
$ = \frac{2}{{\sin 18^\circ }} - \frac{2}{{\sin 54^\circ }}$
$ = \frac{2}{{\frac{{\sqrt 5 - 1}}{4}}} - \frac{2}{{\frac{{\sqrt 5 + 1}}{4}}}$
$ = 8\left( {\frac{1}{{\sqrt 5 - 1}} - \frac{1}{{\sqrt 5 + 1}}} \right)$
$ = 8\left( {\frac{{\sqrt 5 + 1 - \sqrt 5 + 1}}{4}} \right)$
$ = 8\left( {\frac{2}{4}} \right) = 2 \times 2 = 4$
$\therefore $ The value of $\tan 9^\circ - \tan 27^\circ - \tan 63^\circ + \tan 81^\circ $= 4
Note: $81^\circ $ and $63^\circ $ lies in the first quadrant. Here if we observe $81^\circ $ and $9^\circ $ are complementary angles. Similarly $63^\circ $ and $27^\circ $ are complementary angles. Using this idea, we simplified them into a single trigonometric function. The value of $\sin 18^\circ = \frac{{\sqrt 5 - 1}}{4}$ and the value of$\sin 54^\circ = \frac{{\sqrt 5 + 1}}{4}$.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

