
Find the value of $\tan 9^\circ - \tan 27^\circ - \tan 63^\circ + \tan 81^\circ $.
A.-1
B.0
C.1
D.4
Answer
594.9k+ views
Hint: We need to know the formulae of trigonometric functions in different quadrants and basic values of trigonometric functions to solve the given problem.
Given expression is $\tan 9^\circ - \tan 27^\circ - \tan 63^\circ + \tan 81^\circ $
$\left[ {\because \tan \theta = \cot (90 - \theta )} \right]$, So we can write
$ = \tan 9^\circ + \cot 9^\circ - \left( {\tan 27^\circ + \cot 27^\circ } \right)$
$ = \frac{{1 + {{\tan }^2}9^\circ }}{{\tan 9^\circ }} - \frac{{1 + {{\tan }^2}27^\circ }}{{\tan 27^\circ }}$ (+1 and -1 get cancelled out)
$\left[ {\because 1 + {{\tan }^2}\theta = {{\sec }^2}\theta } \right]$
$ = \frac{{{{\sec }^2}9^\circ }}{{\tan 9^\circ }} - \frac{{{{\sec }^2}27^\circ }}{{\tan 27^\circ }}$
We can simply the above expression by writing as
$ = \frac{1}{{\sin 9^\circ \cos 9^\circ }} - \frac{1}{{\sin 27^\circ \cos 27^\circ }}$ $\left[ {\because \sec \theta = \frac{1}{{\cos \theta }}\& \tan \theta = \frac{{\sin \theta }}{{\cos \theta }}} \right]$
Multiplying and dividing the above term with 2
$ = \frac{2}{{\sin 18^\circ }} - \frac{2}{{\sin 54^\circ }}$
$ = \frac{2}{{\frac{{\sqrt 5 - 1}}{4}}} - \frac{2}{{\frac{{\sqrt 5 + 1}}{4}}}$
$ = 8\left( {\frac{1}{{\sqrt 5 - 1}} - \frac{1}{{\sqrt 5 + 1}}} \right)$
$ = 8\left( {\frac{{\sqrt 5 + 1 - \sqrt 5 + 1}}{4}} \right)$
$ = 8\left( {\frac{2}{4}} \right) = 2 \times 2 = 4$
$\therefore $ The value of $\tan 9^\circ - \tan 27^\circ - \tan 63^\circ + \tan 81^\circ $= 4
Note: $81^\circ $ and $63^\circ $ lies in the first quadrant. Here if we observe $81^\circ $ and $9^\circ $ are complementary angles. Similarly $63^\circ $ and $27^\circ $ are complementary angles. Using this idea, we simplified them into a single trigonometric function. The value of $\sin 18^\circ = \frac{{\sqrt 5 - 1}}{4}$ and the value of$\sin 54^\circ = \frac{{\sqrt 5 + 1}}{4}$.
Given expression is $\tan 9^\circ - \tan 27^\circ - \tan 63^\circ + \tan 81^\circ $
$\left[ {\because \tan \theta = \cot (90 - \theta )} \right]$, So we can write
$ = \tan 9^\circ + \cot 9^\circ - \left( {\tan 27^\circ + \cot 27^\circ } \right)$
$ = \frac{{1 + {{\tan }^2}9^\circ }}{{\tan 9^\circ }} - \frac{{1 + {{\tan }^2}27^\circ }}{{\tan 27^\circ }}$ (+1 and -1 get cancelled out)
$\left[ {\because 1 + {{\tan }^2}\theta = {{\sec }^2}\theta } \right]$
$ = \frac{{{{\sec }^2}9^\circ }}{{\tan 9^\circ }} - \frac{{{{\sec }^2}27^\circ }}{{\tan 27^\circ }}$
We can simply the above expression by writing as
$ = \frac{1}{{\sin 9^\circ \cos 9^\circ }} - \frac{1}{{\sin 27^\circ \cos 27^\circ }}$ $\left[ {\because \sec \theta = \frac{1}{{\cos \theta }}\& \tan \theta = \frac{{\sin \theta }}{{\cos \theta }}} \right]$
Multiplying and dividing the above term with 2
$ = \frac{2}{{\sin 18^\circ }} - \frac{2}{{\sin 54^\circ }}$
$ = \frac{2}{{\frac{{\sqrt 5 - 1}}{4}}} - \frac{2}{{\frac{{\sqrt 5 + 1}}{4}}}$
$ = 8\left( {\frac{1}{{\sqrt 5 - 1}} - \frac{1}{{\sqrt 5 + 1}}} \right)$
$ = 8\left( {\frac{{\sqrt 5 + 1 - \sqrt 5 + 1}}{4}} \right)$
$ = 8\left( {\frac{2}{4}} \right) = 2 \times 2 = 4$
$\therefore $ The value of $\tan 9^\circ - \tan 27^\circ - \tan 63^\circ + \tan 81^\circ $= 4
Note: $81^\circ $ and $63^\circ $ lies in the first quadrant. Here if we observe $81^\circ $ and $9^\circ $ are complementary angles. Similarly $63^\circ $ and $27^\circ $ are complementary angles. Using this idea, we simplified them into a single trigonometric function. The value of $\sin 18^\circ = \frac{{\sqrt 5 - 1}}{4}$ and the value of$\sin 54^\circ = \frac{{\sqrt 5 + 1}}{4}$.
Recently Updated Pages
The height of a solid metal cylinder is 20cm Its r-class-10-maths-ICSE

If a train crossed a pole at a speed of 60kmhr in 30 class 10 physics CBSE

Name the Writs that the High Courts are empowered to class 10 social science CBSE

A tower is 5sqrt 3 meter high Find the angle of el-class-10-maths-CBSE

Immediate cause of variations of A Mutations B Environmental class 10 biology CBSE

A rectangular container whose base is a square of side class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Why is Sardar Vallabhbhai Patel called the Iron man class 10 social science CBSE

Tropical deciduous trees shed their leaves in the dry class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Write an application to the principal requesting five class 10 english CBSE

