
Find the value of $\tan {15^0} + \tan {75^0}$.
$
\left( A \right){\text{. }}2\sqrt 3 \\
\left( B \right).{\text{ }}2 \\
\left( C \right).{\text{ }}2 - \sqrt 3 \\
\left( D \right).{\text{ }}4\sqrt 3 \\
\left( E \right).{\text{ }}4 \\
$
Answer
610.8k+ views
Hint- Try to make the expression of the form $\dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }}$ which is equal to$\sin 2\theta $.
Given: $\tan {15^0} + \tan {75^0}$
Rewriting above as:
$ = {\text{tan1}}{{\text{5}}^0} + \dfrac{1}{{\cot {{75}^0}}}{\text{ }}\left\{ {\because \tan \theta = \dfrac{1}{{\cot \theta }}} \right\}$
Now, using $\tan \theta = \cot \left( {{{90}^0} - \theta } \right)$ to convert $\cot $ into $\tan $, we get
$
\Rightarrow \tan {15^0} + \dfrac{1}{{\cot \left( {{{90}^0} - {{15}^0}} \right)}} \\
\Rightarrow \tan {15^0} + \dfrac{1}{{\tan {{15}^0}}}{\text{ }}\left\{ {\because \tan \theta = \cot \left( {{{90}^0} - \theta } \right)} \right\} \\
$
By cross-Multiplying, we get
$ \Rightarrow \dfrac{{{{\tan }^2}{{15}^0} + 1}}{{\tan {{15}^0}}}$
Multiply and divide by $2$, we get
$
\Rightarrow \dfrac{{2\left[ {{{\tan }^2}{{15}^0} + 1} \right]}}{{2\tan {{15}^0}}} \\
\Rightarrow \dfrac{2}{{\sin 2 \times {{15}^0}}}{\text{ }}\left\{ {\because \dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }} = \sin 2\theta } \right\} \\
\Rightarrow \dfrac{2}{{\sin {{30}^0}}} \\
$
Now, putting the value of $\sin {30^0} = \dfrac{1}{2}$, we get
$
\Rightarrow \dfrac{2}{{\left( {\dfrac{1}{2}} \right)}} \\
\Rightarrow 4 \\
$
$\therefore $ Correct option is $\left( E \right)$
Note- Whenever there are integer angles inside trigonometric functions whose value is not known to us, always try to convert it by using the $\left( {{{90}^0} - \theta } \right)$ form so as to make some trigonometric relations which makes problems much easier to solve.
Given: $\tan {15^0} + \tan {75^0}$
Rewriting above as:
$ = {\text{tan1}}{{\text{5}}^0} + \dfrac{1}{{\cot {{75}^0}}}{\text{ }}\left\{ {\because \tan \theta = \dfrac{1}{{\cot \theta }}} \right\}$
Now, using $\tan \theta = \cot \left( {{{90}^0} - \theta } \right)$ to convert $\cot $ into $\tan $, we get
$
\Rightarrow \tan {15^0} + \dfrac{1}{{\cot \left( {{{90}^0} - {{15}^0}} \right)}} \\
\Rightarrow \tan {15^0} + \dfrac{1}{{\tan {{15}^0}}}{\text{ }}\left\{ {\because \tan \theta = \cot \left( {{{90}^0} - \theta } \right)} \right\} \\
$
By cross-Multiplying, we get
$ \Rightarrow \dfrac{{{{\tan }^2}{{15}^0} + 1}}{{\tan {{15}^0}}}$
Multiply and divide by $2$, we get
$
\Rightarrow \dfrac{{2\left[ {{{\tan }^2}{{15}^0} + 1} \right]}}{{2\tan {{15}^0}}} \\
\Rightarrow \dfrac{2}{{\sin 2 \times {{15}^0}}}{\text{ }}\left\{ {\because \dfrac{{2\tan \theta }}{{1 + {{\tan }^2}\theta }} = \sin 2\theta } \right\} \\
\Rightarrow \dfrac{2}{{\sin {{30}^0}}} \\
$
Now, putting the value of $\sin {30^0} = \dfrac{1}{2}$, we get
$
\Rightarrow \dfrac{2}{{\left( {\dfrac{1}{2}} \right)}} \\
\Rightarrow 4 \\
$
$\therefore $ Correct option is $\left( E \right)$
Note- Whenever there are integer angles inside trigonometric functions whose value is not known to us, always try to convert it by using the $\left( {{{90}^0} - \theta } \right)$ form so as to make some trigonometric relations which makes problems much easier to solve.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
The shortest day of the year in India

State and prove the Pythagoras theorem-class-10-maths-CBSE

A Gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

What is UltraEdge (Snickometer) used for in cricket?

What are the public facilities provided by the government? Also explain each facility

Distinguish between the reserved forests and protected class 10 biology CBSE

