Find the value of $\tan 10{}^\circ \tan 15{}^\circ \tan 75{}^\circ \tan 80{}^\circ $.
(a) $\dfrac{1}{16}$
(b) $0$
(c) $1$
(d) None of these
Last updated date: 20th Mar 2023
•
Total views: 306.3k
•
Views today: 6.86k
Answer
306.3k+ views
Hint: First use the formula of $\tan \theta $ to $\cot \theta $ conversion which is: $\tan \left( 90{}^\circ -\theta \right)=\cot \theta $.
Then use the formula $tan\theta \cot \theta =1$
Complete step-by-step answer:
We need to find the value of $\tan 10{}^\circ \tan 15{}^\circ \tan 75{}^\circ \tan 80{}^\circ $
We will first use the formula of $\tan \theta $ to $\cot \theta $ conversion: on either the first two terms or the last two terms.
Here, let us use it on $\tan 10{}^\circ $and $\tan 15{}^\circ $.
So $\tan 10{}^\circ $can be written as $\tan \left( 90{}^\circ -80{}^\circ \right)$
Now use the formula $\tan \left( 90{}^\circ -\theta \right)=\cot \theta $ where $\theta =80{}^\circ $
We will get the following:
$\tan \left( 90{}^\circ -80{}^\circ \right)=\cot 80{}^\circ $
So,$\tan 10{}^\circ =\cot 80{}^\circ $ …(1)
Similarly, $\tan 15{}^\circ $ can be written as $\tan \left( 90{}^\circ -75{}^\circ \right)$
Now use the formula $\tan \left( 90{}^\circ -\theta \right)=\cot \theta $ where $\theta =75{}^\circ $
We will get the following:
$\tan \left( 90{}^\circ -75{}^\circ \right)=\cot 75{}^\circ $
So, $\tan 15{}^\circ =\cot 75{}^\circ $ …(2)
Now we will substitute equations (1) and (2) in the given expression:
\[\tan 10{}^\circ \tan 15{}^\circ \tan 75{}^\circ \tan 80{}^\circ =\cot 80{}^\circ \cot 75{}^\circ \tan 75{}^\circ \tan 80{}^\circ \]
Rearranging the terms, we get the following:
\[\tan 10{}^\circ \tan 15{}^\circ \tan 75{}^\circ \tan 80{}^\circ =\left( \tan 80{}^\circ \cot 80{}^\circ \right)\left( \tan 75{}^\circ \cot 75{}^\circ \right)\] …(3)
Now we will use the formula $tan\theta \cot \theta =1$ which is derived by using $\left( \cot \theta =\dfrac{1}{\tan \theta } \right)$
So, \[\tan 80{}^\circ \cot 80{}^\circ =1\]
And \[\tan 75{}^\circ \cot 75{}^\circ =1\] …(4)
We will now substitute the equations in (4) to (3), we will get the following:
\[\tan 10{}^\circ \tan 15{}^\circ \tan 75{}^\circ \tan 80{}^\circ =\left( \tan 80{}^\circ \cot 80{}^\circ \right)\left( \tan 75{}^\circ \cot 75{}^\circ \right)\]
\[\tan 10{}^\circ \tan 15{}^\circ \tan 75{}^\circ \tan 80{}^\circ =\left( 1 \right)\left( 1 \right)\]
So, \[\tan 10{}^\circ \tan 15{}^\circ \tan 75{}^\circ \tan 80{}^\circ =1\]
which is option (c)
So the final answer is (c) $1$
Note: Instead of converting the first two terms from $\tan 10{}^\circ $and $\tan 15{}^\circ $to $\cot 80{}^\circ $and $\cot 75{}^\circ $respectively, one can change the last two terms from $\tan 75{}^\circ $and $\tan 80{}^\circ $to $\cot 15{}^\circ $and $\cot 10{}^\circ $respectively too and then proceed. The final answer will be the same in both the cases.
Then use the formula $tan\theta \cot \theta =1$
Complete step-by-step answer:
We need to find the value of $\tan 10{}^\circ \tan 15{}^\circ \tan 75{}^\circ \tan 80{}^\circ $
We will first use the formula of $\tan \theta $ to $\cot \theta $ conversion: on either the first two terms or the last two terms.
Here, let us use it on $\tan 10{}^\circ $and $\tan 15{}^\circ $.
So $\tan 10{}^\circ $can be written as $\tan \left( 90{}^\circ -80{}^\circ \right)$
Now use the formula $\tan \left( 90{}^\circ -\theta \right)=\cot \theta $ where $\theta =80{}^\circ $
We will get the following:
$\tan \left( 90{}^\circ -80{}^\circ \right)=\cot 80{}^\circ $
So,$\tan 10{}^\circ =\cot 80{}^\circ $ …(1)
Similarly, $\tan 15{}^\circ $ can be written as $\tan \left( 90{}^\circ -75{}^\circ \right)$
Now use the formula $\tan \left( 90{}^\circ -\theta \right)=\cot \theta $ where $\theta =75{}^\circ $
We will get the following:
$\tan \left( 90{}^\circ -75{}^\circ \right)=\cot 75{}^\circ $
So, $\tan 15{}^\circ =\cot 75{}^\circ $ …(2)
Now we will substitute equations (1) and (2) in the given expression:
\[\tan 10{}^\circ \tan 15{}^\circ \tan 75{}^\circ \tan 80{}^\circ =\cot 80{}^\circ \cot 75{}^\circ \tan 75{}^\circ \tan 80{}^\circ \]
Rearranging the terms, we get the following:
\[\tan 10{}^\circ \tan 15{}^\circ \tan 75{}^\circ \tan 80{}^\circ =\left( \tan 80{}^\circ \cot 80{}^\circ \right)\left( \tan 75{}^\circ \cot 75{}^\circ \right)\] …(3)
Now we will use the formula $tan\theta \cot \theta =1$ which is derived by using $\left( \cot \theta =\dfrac{1}{\tan \theta } \right)$
So, \[\tan 80{}^\circ \cot 80{}^\circ =1\]
And \[\tan 75{}^\circ \cot 75{}^\circ =1\] …(4)
We will now substitute the equations in (4) to (3), we will get the following:
\[\tan 10{}^\circ \tan 15{}^\circ \tan 75{}^\circ \tan 80{}^\circ =\left( \tan 80{}^\circ \cot 80{}^\circ \right)\left( \tan 75{}^\circ \cot 75{}^\circ \right)\]
\[\tan 10{}^\circ \tan 15{}^\circ \tan 75{}^\circ \tan 80{}^\circ =\left( 1 \right)\left( 1 \right)\]
So, \[\tan 10{}^\circ \tan 15{}^\circ \tan 75{}^\circ \tan 80{}^\circ =1\]
which is option (c)
So the final answer is (c) $1$
Note: Instead of converting the first two terms from $\tan 10{}^\circ $and $\tan 15{}^\circ $to $\cot 80{}^\circ $and $\cot 75{}^\circ $respectively, one can change the last two terms from $\tan 75{}^\circ $and $\tan 80{}^\circ $to $\cot 15{}^\circ $and $\cot 10{}^\circ $respectively too and then proceed. The final answer will be the same in both the cases.
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE
