
Find the value of ${\text{si}}{{\text{n}}^2}18^\circ - {\text{ co}}{{\text{s}}^2}72^\circ $.
Answer
607.5k+ views
Hint –To simplify the equation in the given question we use trigonometric identities and covert the sine function into cosine function or vice versa.
Complete step-by-step answer:
${\text{si}}{{\text{n}}^2}18^\circ - {\text{ co}}{{\text{s}}^2}72^\circ $
⟹${\text{si}}{{\text{n}}^2}\left( {90 - 72} \right)^\circ - {\text{ co}}{{\text{s}}^2}72^\circ $ ---- sin (90 – θ) = cosθ, since sine is a periodic function.
⟹${\text{co}}{{\text{s}}^2}72^\circ - {\text{ co}}{{\text{s}}^2}72^\circ $
⟹0
Hence, ${\text{si}}{{\text{n}}^2}18^\circ - {\text{ co}}{{\text{s}}^2}72^\circ $ = 0
Note: In order to solve this type of question the key is to use the right trigonometric functions and covert one of the trigonometric ratios to another to simplify the equation. Then we solve the obtained function using the trigonometric table.
Complete step-by-step answer:
${\text{si}}{{\text{n}}^2}18^\circ - {\text{ co}}{{\text{s}}^2}72^\circ $
⟹${\text{si}}{{\text{n}}^2}\left( {90 - 72} \right)^\circ - {\text{ co}}{{\text{s}}^2}72^\circ $ ---- sin (90 – θ) = cosθ, since sine is a periodic function.
⟹${\text{co}}{{\text{s}}^2}72^\circ - {\text{ co}}{{\text{s}}^2}72^\circ $
⟹0
Hence, ${\text{si}}{{\text{n}}^2}18^\circ - {\text{ co}}{{\text{s}}^2}72^\circ $ = 0
Note: In order to solve this type of question the key is to use the right trigonometric functions and covert one of the trigonometric ratios to another to simplify the equation. Then we solve the obtained function using the trigonometric table.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
The shortest day of the year in India

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

