Find the value of \[\sin \dfrac{\pi }{{18}}\sin \dfrac{{5\pi }}{{18}}\sin \dfrac{{7\pi }}{{18}}\]
Last updated date: 21st Mar 2023
•
Total views: 307.5k
•
Views today: 4.86k
Answer
307.5k+ views
Hint: Try to break the angles inside $\sin $ in order to use its identities to solve.
Given: \[\sin \dfrac{\pi }{{18}}\sin \dfrac{{5\pi }}{{18}}\sin \dfrac{{7\pi }}{{18}}{\text{ }} \ldots \left( 1 \right)\]
Now, \[\dfrac{\pi }{{18}} = \dfrac{{{{180}^ \circ }}}{{18}} = {10^ \circ }\]
Putting the value of \[\dfrac{\pi }{{18}} = {10^0}\]in equation $\left( 1 \right)$, we get
\[
\Rightarrow \sin \left( {{{10}^ \circ }} \right)\sin \left( {5 \times {{10}^ \circ }} \right)\sin \left( {7 \times {{10}^ \circ }} \right) \\
\Rightarrow \sin \left( {{{10}^ \circ }} \right)\sin \left( {{{50}^ \circ }} \right)\sin \left( {{{70}^ \circ }} \right){\text{ }} \ldots \left( 2 \right) \\
\]
We know that \[{\text{2sinA}}{\text{.sinB = cos}}\left( {{\text{A - B}}} \right){\text{ - cos}}\left( {{\text{A + B}}} \right)\]
\[ \Rightarrow {\text{sinA}}{\text{.sinB}} = \dfrac{1}{2}\left[ {{\text{cos}}\left( {{\text{A - B}}} \right){\text{ - cos}}\left( {{\text{A + B}}} \right)} \right]\]
Now, comparing this identity with equation$\left( 2 \right)$, we get \[{\text{A = 7}}{{\text{0}}^0}{\text{ & B = 5}}{{\text{0}}^0}\].
Hence, substituting this in equation$\left( 2 \right)$, we get:
\[
\Rightarrow \dfrac{1}{2}\sin \left( {{{10}^ \circ }} \right)\left[ {\cos \left( {{{70}^ \circ } - {{50}^ \circ }} \right) - \cos \left( {{{70}^ \circ } + {{50}^ \circ }} \right)} \right] \\
\Rightarrow \dfrac{1}{2}\sin \left( {{{10}^ \circ }} \right)\left[ {\cos \left( {{{20}^ \circ }} \right) - \cos \left( {{{120}^ \circ }} \right)} \right] \\
\]
We know, \[\cos {120^ \circ } = - \dfrac{1}{2}\],
\[\therefore \dfrac{1}{2}\sin \left( {{{10}^ \circ }} \right)\left[ {\cos \left( {2 \times {{10}^ \circ }} \right) + \dfrac{1}{2}} \right]{\text{ }} \ldots \left( 3 \right)\]
Also, we know, \[{\text{cos2A = 1}} - {\text{2si}}{{\text{n}}^2}{\text{A}}\].
Comparing \[{\text{cos2A}}\] with \[\cos \left( {2 \times {{10}^ \circ }} \right)\] from equation $\left( 3 \right)$, we get ${\text{A}} = {10^0}$
Hence, using this identity in equation$\left( 3 \right)$, we get
\[
\Rightarrow \dfrac{1}{2}\sin \left( {{{10}^0}} \right)\left[ {1 - 2{{\sin }^2}{{10}^0} - \cos \left( {{{90}^0} + {{30}^0}} \right)} \right] \\
\Rightarrow \dfrac{1}{2}\sin \left( {{{10}^0}} \right)\left[ {1 - 2{{\sin }^2}{{10}^0} + \dfrac{1}{2}} \right]{\text{ }}\left\{ {\because \cos {{120}^0} = - \dfrac{1}{2}} \right\} \\
\Rightarrow \dfrac{1}{2}\sin \left( {{{10}^0}} \right)\left[ {\dfrac{3}{2} - 2{{\sin }^2}{{10}^0}} \right] \\
\Rightarrow \dfrac{1}{2}\sin \left( {{{10}^0}} \right)\left[ {\dfrac{{3 - 4{{\sin }^2}{{10}^0}}}{2}} \right] \\
\Rightarrow \dfrac{{3\sin {{10}^0} - 4{{\sin }^3}{{10}^0}}}{2}{\text{ }} \ldots \left( 4 \right) \\
\]
Now, we know that \[{\text{3sin}}\theta - {\text{4si}}{{\text{n}}^3}\theta = \sin 3\theta \].
Using this identity in equation$\left( 4 \right)$, we get:
\[
\Rightarrow \dfrac{{3\sin {{10}^0} - {\text{4si}}{{\text{n}}^3}{{10}^0}}}{2} \\
\Rightarrow \dfrac{{\sin 3 \times {{10}^0}}}{2} \\
\Rightarrow \dfrac{{\sin {{30}^0}}}{2} \\
\Rightarrow \dfrac{1}{4}{\text{ }}\left\{ {\because \sin {{30}^0} = \dfrac{1}{2}} \right\} \\
\]
Note- Whenever you see complicated trigonometric terms together, always try to break them by using trigonometric relations and formulas and try to reduce the power and find the relations between them.
Given: \[\sin \dfrac{\pi }{{18}}\sin \dfrac{{5\pi }}{{18}}\sin \dfrac{{7\pi }}{{18}}{\text{ }} \ldots \left( 1 \right)\]
Now, \[\dfrac{\pi }{{18}} = \dfrac{{{{180}^ \circ }}}{{18}} = {10^ \circ }\]
Putting the value of \[\dfrac{\pi }{{18}} = {10^0}\]in equation $\left( 1 \right)$, we get
\[
\Rightarrow \sin \left( {{{10}^ \circ }} \right)\sin \left( {5 \times {{10}^ \circ }} \right)\sin \left( {7 \times {{10}^ \circ }} \right) \\
\Rightarrow \sin \left( {{{10}^ \circ }} \right)\sin \left( {{{50}^ \circ }} \right)\sin \left( {{{70}^ \circ }} \right){\text{ }} \ldots \left( 2 \right) \\
\]
We know that \[{\text{2sinA}}{\text{.sinB = cos}}\left( {{\text{A - B}}} \right){\text{ - cos}}\left( {{\text{A + B}}} \right)\]
\[ \Rightarrow {\text{sinA}}{\text{.sinB}} = \dfrac{1}{2}\left[ {{\text{cos}}\left( {{\text{A - B}}} \right){\text{ - cos}}\left( {{\text{A + B}}} \right)} \right]\]
Now, comparing this identity with equation$\left( 2 \right)$, we get \[{\text{A = 7}}{{\text{0}}^0}{\text{ & B = 5}}{{\text{0}}^0}\].
Hence, substituting this in equation$\left( 2 \right)$, we get:
\[
\Rightarrow \dfrac{1}{2}\sin \left( {{{10}^ \circ }} \right)\left[ {\cos \left( {{{70}^ \circ } - {{50}^ \circ }} \right) - \cos \left( {{{70}^ \circ } + {{50}^ \circ }} \right)} \right] \\
\Rightarrow \dfrac{1}{2}\sin \left( {{{10}^ \circ }} \right)\left[ {\cos \left( {{{20}^ \circ }} \right) - \cos \left( {{{120}^ \circ }} \right)} \right] \\
\]
We know, \[\cos {120^ \circ } = - \dfrac{1}{2}\],
\[\therefore \dfrac{1}{2}\sin \left( {{{10}^ \circ }} \right)\left[ {\cos \left( {2 \times {{10}^ \circ }} \right) + \dfrac{1}{2}} \right]{\text{ }} \ldots \left( 3 \right)\]
Also, we know, \[{\text{cos2A = 1}} - {\text{2si}}{{\text{n}}^2}{\text{A}}\].
Comparing \[{\text{cos2A}}\] with \[\cos \left( {2 \times {{10}^ \circ }} \right)\] from equation $\left( 3 \right)$, we get ${\text{A}} = {10^0}$
Hence, using this identity in equation$\left( 3 \right)$, we get
\[
\Rightarrow \dfrac{1}{2}\sin \left( {{{10}^0}} \right)\left[ {1 - 2{{\sin }^2}{{10}^0} - \cos \left( {{{90}^0} + {{30}^0}} \right)} \right] \\
\Rightarrow \dfrac{1}{2}\sin \left( {{{10}^0}} \right)\left[ {1 - 2{{\sin }^2}{{10}^0} + \dfrac{1}{2}} \right]{\text{ }}\left\{ {\because \cos {{120}^0} = - \dfrac{1}{2}} \right\} \\
\Rightarrow \dfrac{1}{2}\sin \left( {{{10}^0}} \right)\left[ {\dfrac{3}{2} - 2{{\sin }^2}{{10}^0}} \right] \\
\Rightarrow \dfrac{1}{2}\sin \left( {{{10}^0}} \right)\left[ {\dfrac{{3 - 4{{\sin }^2}{{10}^0}}}{2}} \right] \\
\Rightarrow \dfrac{{3\sin {{10}^0} - 4{{\sin }^3}{{10}^0}}}{2}{\text{ }} \ldots \left( 4 \right) \\
\]
Now, we know that \[{\text{3sin}}\theta - {\text{4si}}{{\text{n}}^3}\theta = \sin 3\theta \].
Using this identity in equation$\left( 4 \right)$, we get:
\[
\Rightarrow \dfrac{{3\sin {{10}^0} - {\text{4si}}{{\text{n}}^3}{{10}^0}}}{2} \\
\Rightarrow \dfrac{{\sin 3 \times {{10}^0}}}{2} \\
\Rightarrow \dfrac{{\sin {{30}^0}}}{2} \\
\Rightarrow \dfrac{1}{4}{\text{ }}\left\{ {\because \sin {{30}^0} = \dfrac{1}{2}} \right\} \\
\]
Note- Whenever you see complicated trigonometric terms together, always try to break them by using trigonometric relations and formulas and try to reduce the power and find the relations between them.
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE
