Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

Find the value of \[\sin \dfrac{\pi }{{18}}\sin \dfrac{{5\pi }}{{18}}\sin \dfrac{{7\pi }}{{18}}\]

seo-qna
Last updated date: 25th Apr 2024
Total views: 427.5k
Views today: 5.27k
Answer
VerifiedVerified
427.5k+ views
Hint: Try to break the angles inside $\sin $ in order to use its identities to solve.

Given: \[\sin \dfrac{\pi }{{18}}\sin \dfrac{{5\pi }}{{18}}\sin \dfrac{{7\pi }}{{18}}{\text{ }} \ldots \left( 1 \right)\]
Now, \[\dfrac{\pi }{{18}} = \dfrac{{{{180}^ \circ }}}{{18}} = {10^ \circ }\]
Putting the value of \[\dfrac{\pi }{{18}} = {10^0}\]in equation $\left( 1 \right)$, we get
\[
   \Rightarrow \sin \left( {{{10}^ \circ }} \right)\sin \left( {5 \times {{10}^ \circ }} \right)\sin \left( {7 \times {{10}^ \circ }} \right) \\
   \Rightarrow \sin \left( {{{10}^ \circ }} \right)\sin \left( {{{50}^ \circ }} \right)\sin \left( {{{70}^ \circ }} \right){\text{ }} \ldots \left( 2 \right) \\
\]
We know that \[{\text{2sinA}}{\text{.sinB = cos}}\left( {{\text{A - B}}} \right){\text{ - cos}}\left( {{\text{A + B}}} \right)\]
\[ \Rightarrow {\text{sinA}}{\text{.sinB}} = \dfrac{1}{2}\left[ {{\text{cos}}\left( {{\text{A - B}}} \right){\text{ - cos}}\left( {{\text{A + B}}} \right)} \right]\]
Now, comparing this identity with equation$\left( 2 \right)$, we get \[{\text{A = 7}}{{\text{0}}^0}{\text{ & B = 5}}{{\text{0}}^0}\].
Hence, substituting this in equation$\left( 2 \right)$, we get:
\[
   \Rightarrow \dfrac{1}{2}\sin \left( {{{10}^ \circ }} \right)\left[ {\cos \left( {{{70}^ \circ } - {{50}^ \circ }} \right) - \cos \left( {{{70}^ \circ } + {{50}^ \circ }} \right)} \right] \\
   \Rightarrow \dfrac{1}{2}\sin \left( {{{10}^ \circ }} \right)\left[ {\cos \left( {{{20}^ \circ }} \right) - \cos \left( {{{120}^ \circ }} \right)} \right] \\
\]
We know, \[\cos {120^ \circ } = - \dfrac{1}{2}\],
\[\therefore \dfrac{1}{2}\sin \left( {{{10}^ \circ }} \right)\left[ {\cos \left( {2 \times {{10}^ \circ }} \right) + \dfrac{1}{2}} \right]{\text{ }} \ldots \left( 3 \right)\]
Also, we know, \[{\text{cos2A = 1}} - {\text{2si}}{{\text{n}}^2}{\text{A}}\].
Comparing \[{\text{cos2A}}\] with \[\cos \left( {2 \times {{10}^ \circ }} \right)\] from equation $\left( 3 \right)$, we get ${\text{A}} = {10^0}$
Hence, using this identity in equation$\left( 3 \right)$, we get
\[
   \Rightarrow \dfrac{1}{2}\sin \left( {{{10}^0}} \right)\left[ {1 - 2{{\sin }^2}{{10}^0} - \cos \left( {{{90}^0} + {{30}^0}} \right)} \right] \\
   \Rightarrow \dfrac{1}{2}\sin \left( {{{10}^0}} \right)\left[ {1 - 2{{\sin }^2}{{10}^0} + \dfrac{1}{2}} \right]{\text{ }}\left\{ {\because \cos {{120}^0} = - \dfrac{1}{2}} \right\} \\
   \Rightarrow \dfrac{1}{2}\sin \left( {{{10}^0}} \right)\left[ {\dfrac{3}{2} - 2{{\sin }^2}{{10}^0}} \right] \\
   \Rightarrow \dfrac{1}{2}\sin \left( {{{10}^0}} \right)\left[ {\dfrac{{3 - 4{{\sin }^2}{{10}^0}}}{2}} \right] \\
   \Rightarrow \dfrac{{3\sin {{10}^0} - 4{{\sin }^3}{{10}^0}}}{2}{\text{ }} \ldots \left( 4 \right) \\
\]
Now, we know that \[{\text{3sin}}\theta - {\text{4si}}{{\text{n}}^3}\theta = \sin 3\theta \].
Using this identity in equation$\left( 4 \right)$, we get:
\[
   \Rightarrow \dfrac{{3\sin {{10}^0} - {\text{4si}}{{\text{n}}^3}{{10}^0}}}{2} \\
   \Rightarrow \dfrac{{\sin 3 \times {{10}^0}}}{2} \\
   \Rightarrow \dfrac{{\sin {{30}^0}}}{2} \\
   \Rightarrow \dfrac{1}{4}{\text{ }}\left\{ {\because \sin {{30}^0} = \dfrac{1}{2}} \right\} \\
\]

Note- Whenever you see complicated trigonometric terms together, always try to break them by using trigonometric relations and formulas and try to reduce the power and find the relations between them.

Recently Updated Pages