Answer
Verified
484.8k+ views
Hint: Try to break the angles inside $\sin $ in order to use its identities to solve.
Given: \[\sin \dfrac{\pi }{{18}}\sin \dfrac{{5\pi }}{{18}}\sin \dfrac{{7\pi }}{{18}}{\text{ }} \ldots \left( 1 \right)\]
Now, \[\dfrac{\pi }{{18}} = \dfrac{{{{180}^ \circ }}}{{18}} = {10^ \circ }\]
Putting the value of \[\dfrac{\pi }{{18}} = {10^0}\]in equation $\left( 1 \right)$, we get
\[
\Rightarrow \sin \left( {{{10}^ \circ }} \right)\sin \left( {5 \times {{10}^ \circ }} \right)\sin \left( {7 \times {{10}^ \circ }} \right) \\
\Rightarrow \sin \left( {{{10}^ \circ }} \right)\sin \left( {{{50}^ \circ }} \right)\sin \left( {{{70}^ \circ }} \right){\text{ }} \ldots \left( 2 \right) \\
\]
We know that \[{\text{2sinA}}{\text{.sinB = cos}}\left( {{\text{A - B}}} \right){\text{ - cos}}\left( {{\text{A + B}}} \right)\]
\[ \Rightarrow {\text{sinA}}{\text{.sinB}} = \dfrac{1}{2}\left[ {{\text{cos}}\left( {{\text{A - B}}} \right){\text{ - cos}}\left( {{\text{A + B}}} \right)} \right]\]
Now, comparing this identity with equation$\left( 2 \right)$, we get \[{\text{A = 7}}{{\text{0}}^0}{\text{ & B = 5}}{{\text{0}}^0}\].
Hence, substituting this in equation$\left( 2 \right)$, we get:
\[
\Rightarrow \dfrac{1}{2}\sin \left( {{{10}^ \circ }} \right)\left[ {\cos \left( {{{70}^ \circ } - {{50}^ \circ }} \right) - \cos \left( {{{70}^ \circ } + {{50}^ \circ }} \right)} \right] \\
\Rightarrow \dfrac{1}{2}\sin \left( {{{10}^ \circ }} \right)\left[ {\cos \left( {{{20}^ \circ }} \right) - \cos \left( {{{120}^ \circ }} \right)} \right] \\
\]
We know, \[\cos {120^ \circ } = - \dfrac{1}{2}\],
\[\therefore \dfrac{1}{2}\sin \left( {{{10}^ \circ }} \right)\left[ {\cos \left( {2 \times {{10}^ \circ }} \right) + \dfrac{1}{2}} \right]{\text{ }} \ldots \left( 3 \right)\]
Also, we know, \[{\text{cos2A = 1}} - {\text{2si}}{{\text{n}}^2}{\text{A}}\].
Comparing \[{\text{cos2A}}\] with \[\cos \left( {2 \times {{10}^ \circ }} \right)\] from equation $\left( 3 \right)$, we get ${\text{A}} = {10^0}$
Hence, using this identity in equation$\left( 3 \right)$, we get
\[
\Rightarrow \dfrac{1}{2}\sin \left( {{{10}^0}} \right)\left[ {1 - 2{{\sin }^2}{{10}^0} - \cos \left( {{{90}^0} + {{30}^0}} \right)} \right] \\
\Rightarrow \dfrac{1}{2}\sin \left( {{{10}^0}} \right)\left[ {1 - 2{{\sin }^2}{{10}^0} + \dfrac{1}{2}} \right]{\text{ }}\left\{ {\because \cos {{120}^0} = - \dfrac{1}{2}} \right\} \\
\Rightarrow \dfrac{1}{2}\sin \left( {{{10}^0}} \right)\left[ {\dfrac{3}{2} - 2{{\sin }^2}{{10}^0}} \right] \\
\Rightarrow \dfrac{1}{2}\sin \left( {{{10}^0}} \right)\left[ {\dfrac{{3 - 4{{\sin }^2}{{10}^0}}}{2}} \right] \\
\Rightarrow \dfrac{{3\sin {{10}^0} - 4{{\sin }^3}{{10}^0}}}{2}{\text{ }} \ldots \left( 4 \right) \\
\]
Now, we know that \[{\text{3sin}}\theta - {\text{4si}}{{\text{n}}^3}\theta = \sin 3\theta \].
Using this identity in equation$\left( 4 \right)$, we get:
\[
\Rightarrow \dfrac{{3\sin {{10}^0} - {\text{4si}}{{\text{n}}^3}{{10}^0}}}{2} \\
\Rightarrow \dfrac{{\sin 3 \times {{10}^0}}}{2} \\
\Rightarrow \dfrac{{\sin {{30}^0}}}{2} \\
\Rightarrow \dfrac{1}{4}{\text{ }}\left\{ {\because \sin {{30}^0} = \dfrac{1}{2}} \right\} \\
\]
Note- Whenever you see complicated trigonometric terms together, always try to break them by using trigonometric relations and formulas and try to reduce the power and find the relations between them.
Given: \[\sin \dfrac{\pi }{{18}}\sin \dfrac{{5\pi }}{{18}}\sin \dfrac{{7\pi }}{{18}}{\text{ }} \ldots \left( 1 \right)\]
Now, \[\dfrac{\pi }{{18}} = \dfrac{{{{180}^ \circ }}}{{18}} = {10^ \circ }\]
Putting the value of \[\dfrac{\pi }{{18}} = {10^0}\]in equation $\left( 1 \right)$, we get
\[
\Rightarrow \sin \left( {{{10}^ \circ }} \right)\sin \left( {5 \times {{10}^ \circ }} \right)\sin \left( {7 \times {{10}^ \circ }} \right) \\
\Rightarrow \sin \left( {{{10}^ \circ }} \right)\sin \left( {{{50}^ \circ }} \right)\sin \left( {{{70}^ \circ }} \right){\text{ }} \ldots \left( 2 \right) \\
\]
We know that \[{\text{2sinA}}{\text{.sinB = cos}}\left( {{\text{A - B}}} \right){\text{ - cos}}\left( {{\text{A + B}}} \right)\]
\[ \Rightarrow {\text{sinA}}{\text{.sinB}} = \dfrac{1}{2}\left[ {{\text{cos}}\left( {{\text{A - B}}} \right){\text{ - cos}}\left( {{\text{A + B}}} \right)} \right]\]
Now, comparing this identity with equation$\left( 2 \right)$, we get \[{\text{A = 7}}{{\text{0}}^0}{\text{ & B = 5}}{{\text{0}}^0}\].
Hence, substituting this in equation$\left( 2 \right)$, we get:
\[
\Rightarrow \dfrac{1}{2}\sin \left( {{{10}^ \circ }} \right)\left[ {\cos \left( {{{70}^ \circ } - {{50}^ \circ }} \right) - \cos \left( {{{70}^ \circ } + {{50}^ \circ }} \right)} \right] \\
\Rightarrow \dfrac{1}{2}\sin \left( {{{10}^ \circ }} \right)\left[ {\cos \left( {{{20}^ \circ }} \right) - \cos \left( {{{120}^ \circ }} \right)} \right] \\
\]
We know, \[\cos {120^ \circ } = - \dfrac{1}{2}\],
\[\therefore \dfrac{1}{2}\sin \left( {{{10}^ \circ }} \right)\left[ {\cos \left( {2 \times {{10}^ \circ }} \right) + \dfrac{1}{2}} \right]{\text{ }} \ldots \left( 3 \right)\]
Also, we know, \[{\text{cos2A = 1}} - {\text{2si}}{{\text{n}}^2}{\text{A}}\].
Comparing \[{\text{cos2A}}\] with \[\cos \left( {2 \times {{10}^ \circ }} \right)\] from equation $\left( 3 \right)$, we get ${\text{A}} = {10^0}$
Hence, using this identity in equation$\left( 3 \right)$, we get
\[
\Rightarrow \dfrac{1}{2}\sin \left( {{{10}^0}} \right)\left[ {1 - 2{{\sin }^2}{{10}^0} - \cos \left( {{{90}^0} + {{30}^0}} \right)} \right] \\
\Rightarrow \dfrac{1}{2}\sin \left( {{{10}^0}} \right)\left[ {1 - 2{{\sin }^2}{{10}^0} + \dfrac{1}{2}} \right]{\text{ }}\left\{ {\because \cos {{120}^0} = - \dfrac{1}{2}} \right\} \\
\Rightarrow \dfrac{1}{2}\sin \left( {{{10}^0}} \right)\left[ {\dfrac{3}{2} - 2{{\sin }^2}{{10}^0}} \right] \\
\Rightarrow \dfrac{1}{2}\sin \left( {{{10}^0}} \right)\left[ {\dfrac{{3 - 4{{\sin }^2}{{10}^0}}}{2}} \right] \\
\Rightarrow \dfrac{{3\sin {{10}^0} - 4{{\sin }^3}{{10}^0}}}{2}{\text{ }} \ldots \left( 4 \right) \\
\]
Now, we know that \[{\text{3sin}}\theta - {\text{4si}}{{\text{n}}^3}\theta = \sin 3\theta \].
Using this identity in equation$\left( 4 \right)$, we get:
\[
\Rightarrow \dfrac{{3\sin {{10}^0} - {\text{4si}}{{\text{n}}^3}{{10}^0}}}{2} \\
\Rightarrow \dfrac{{\sin 3 \times {{10}^0}}}{2} \\
\Rightarrow \dfrac{{\sin {{30}^0}}}{2} \\
\Rightarrow \dfrac{1}{4}{\text{ }}\left\{ {\because \sin {{30}^0} = \dfrac{1}{2}} \right\} \\
\]
Note- Whenever you see complicated trigonometric terms together, always try to break them by using trigonometric relations and formulas and try to reduce the power and find the relations between them.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Who was the Governor general of India at the time of class 11 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference Between Plant Cell and Animal Cell