Answer
Verified
491.7k+ views
Hint: Let us consider a variable a which will represent the first term of an arithmetic progression and let us consider a variable d which will represent the common difference of the same arithmetic progression. The ‘nth’ term of this arithmetic progression is given by the formula ${{a}_{n}}=a+\left( n-1 \right)d$. Using this formula, we can solve this question.
Complete step by step solution:
Before proceeding with the question, we must know the formula that will be required to solve this question.
In sequences and series, if we have an arithmetic progression having its first term as a and the common difference as d, then the nth term of this arithmetic progression i.e. ${{a}_{n}}$ is given by the formula,
${{a}_{n}}=a+\left( n-1 \right)d$ . . . . . . . . . . . . (1)
In this question, we are given an A.P. 5, 8, 11, 14, . . . . The first term (a) of this A.P. is 5.
The common difference of this A.P. can be found out by subtracting the first term from the second term and is given by d = 8 – 5 = 3.
Also, it is given in the question that the nth term of this A.P. is 68 and we have to find the value of n. Substituting a = 5, d = 3 and ${{a}_{n}}=68$ in formula (1), we get,
$\begin{align}
& 68=5+\left( n-1 \right)\left( 3 \right) \\
& \Rightarrow 3\left( n-1 \right)=63 \\
& \Rightarrow n-1=21 \\
& \Rightarrow n=22 \\
\end{align}$
Hence, the value of n = 22.
Note: There is a possibility that one may commit a mistake while calculating the value of d. It is possible that one may subtract the second term from the first term instead of subtracting the first term by the second term to find the common difference which will lead us to an incorrect answer.
Complete step by step solution:
Before proceeding with the question, we must know the formula that will be required to solve this question.
In sequences and series, if we have an arithmetic progression having its first term as a and the common difference as d, then the nth term of this arithmetic progression i.e. ${{a}_{n}}$ is given by the formula,
${{a}_{n}}=a+\left( n-1 \right)d$ . . . . . . . . . . . . (1)
In this question, we are given an A.P. 5, 8, 11, 14, . . . . The first term (a) of this A.P. is 5.
The common difference of this A.P. can be found out by subtracting the first term from the second term and is given by d = 8 – 5 = 3.
Also, it is given in the question that the nth term of this A.P. is 68 and we have to find the value of n. Substituting a = 5, d = 3 and ${{a}_{n}}=68$ in formula (1), we get,
$\begin{align}
& 68=5+\left( n-1 \right)\left( 3 \right) \\
& \Rightarrow 3\left( n-1 \right)=63 \\
& \Rightarrow n-1=21 \\
& \Rightarrow n=22 \\
\end{align}$
Hence, the value of n = 22.
Note: There is a possibility that one may commit a mistake while calculating the value of d. It is possible that one may subtract the second term from the first term instead of subtracting the first term by the second term to find the common difference which will lead us to an incorrect answer.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE