Find the value of n and r, if \[^n\Pr \]=720 and \[^nCr\]=120
Answer
Verified
479.1k+ views
Hint: A permutation is defined as an arrangement in a definite order of a number of objects taken some or all at a time. The convenient expression to denote permutation is defined as
The permutation formula is given by,
\[^n\Pr = \dfrac{{n!}}{{\left( {n - r} \right)!}};0 \leqslant r \leqslant n\]
Where the symbol denotes the factorial which means that the product of all the integer less than or equal to n but it should be greater than or equal to 1.
Combination- the combination is a selection of a part of a set of objects or selection of all objects when the order does not matter. Therefore, the number of combinations of n objects taken r at a time and the combination formula is given by,
\[^nCr = \dfrac{{n(n - 1)(n - 2).....(n - r + 1)}}{{r!}}\]
\[ = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\]
\[^nCr = \dfrac{{^n\Pr }}{{r!}}\]
Therefore,
Complete step by step answer:
Given, \[^n\Pr = \dfrac{{n!}}{{\left( {n - r} \right)!}}\]
Which is equal to \[720\]
\[\dfrac{{n!}}{{\left( {n - r} \right)!}} = 720\]
As we know the relation between permutation and combination
\[^n\Pr = r{!^n}Cr\]
\[\dfrac{{^n\Pr }}{{^nCr}} = r!.......1.\]
Also given in the question \[^nCr = 120\]
Putting the value of \[^n\Pr \] and \[^nCr\] in equation 1.
\[\dfrac{{720}}{{120}} = r!\]
\[r! = 6\]
\[r! = 3 \times 2 \times 1\]
\[r = 3\]
Now, \[^n\operatorname{P} 3 = 720\]
We can write this
\[n(n - 1)(n - 2) = 720\]
\[n(n - 1)(n - 2) = 10 \times 9 \times 8\]
From this we get
\[n = 10\]
Hence the value of \[n\] and \[r\] are \[10\] and \[3\] respectively.
Note: The relation between permutation and combination-
\[^n\Pr { = ^n}Cr.r!\] if
\[0 < r \leqslant n\]
\[^nCr{ + ^n}Cr - 1{ = ^{n + 1}}Cr\]
The fundamental principle of counting
Multiplication principal
Suppose an operation
The fundamental principle of counting –
Multiplication principle: suppose an operation A can be performed in m ways and associated with each way of performing another operation B can be performed in n ways, then the total number of performances of two operations in the given order is \[m \times n\] ways. This can be extended to any finite number of operations.
Addition principle: if an operation A can be performed in m ways and another operation S, which is independent of A, can be performed in \[m + n\] ways. This can be extended to any finite number of exclusive events.
The permutation formula is given by,
\[^n\Pr = \dfrac{{n!}}{{\left( {n - r} \right)!}};0 \leqslant r \leqslant n\]
Where the symbol denotes the factorial which means that the product of all the integer less than or equal to n but it should be greater than or equal to 1.
Combination- the combination is a selection of a part of a set of objects or selection of all objects when the order does not matter. Therefore, the number of combinations of n objects taken r at a time and the combination formula is given by,
\[^nCr = \dfrac{{n(n - 1)(n - 2).....(n - r + 1)}}{{r!}}\]
\[ = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\]
\[^nCr = \dfrac{{^n\Pr }}{{r!}}\]
Therefore,
Complete step by step answer:
Given, \[^n\Pr = \dfrac{{n!}}{{\left( {n - r} \right)!}}\]
Which is equal to \[720\]
\[\dfrac{{n!}}{{\left( {n - r} \right)!}} = 720\]
As we know the relation between permutation and combination
\[^n\Pr = r{!^n}Cr\]
\[\dfrac{{^n\Pr }}{{^nCr}} = r!.......1.\]
Also given in the question \[^nCr = 120\]
Putting the value of \[^n\Pr \] and \[^nCr\] in equation 1.
\[\dfrac{{720}}{{120}} = r!\]
\[r! = 6\]
\[r! = 3 \times 2 \times 1\]
\[r = 3\]
Now, \[^n\operatorname{P} 3 = 720\]
We can write this
\[n(n - 1)(n - 2) = 720\]
\[n(n - 1)(n - 2) = 10 \times 9 \times 8\]
From this we get
\[n = 10\]
Hence the value of \[n\] and \[r\] are \[10\] and \[3\] respectively.
Note: The relation between permutation and combination-
\[^n\Pr { = ^n}Cr.r!\] if
\[0 < r \leqslant n\]
\[^nCr{ + ^n}Cr - 1{ = ^{n + 1}}Cr\]
The fundamental principle of counting
Multiplication principal
Suppose an operation
The fundamental principle of counting –
Multiplication principle: suppose an operation A can be performed in m ways and associated with each way of performing another operation B can be performed in n ways, then the total number of performances of two operations in the given order is \[m \times n\] ways. This can be extended to any finite number of operations.
Addition principle: if an operation A can be performed in m ways and another operation S, which is independent of A, can be performed in \[m + n\] ways. This can be extended to any finite number of exclusive events.
Recently Updated Pages
A uniform rod of length l and mass m is free to rotate class 10 physics CBSE
Solve the following pairs of linear equations by elimination class 10 maths CBSE
What could be the possible ones digits of the square class 10 maths CBSE
Where was the Great Bath found A Harappa B Mohenjodaro class 10 social science CBSE
PQ is a tangent to a circle with centre O at the point class 10 maths CBSE
The measures of two adjacent sides of a parallelogram class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE