
Find the value of $\log 3$ using series expansion.
Answer
539.1k+ views
Hint: We know that the expansion of a function $y = \ln x$ is $\ln x = \sum\limits_{n = 1}^\infty {\dfrac{{{{\left( {\dfrac{{x - 1}}{x}} \right)}^n}}}{n}} $ for all $x > \dfrac{1}{2}$. Substitute $x = 3$ in the above given expansion and simplify the expression to write the value of $\ln 3$ using series expansion. But we have to calculate the value of $\log 3$. So, we should convert $\log 3$ into $\ln 3$. Then, applying this formula we get the required value of $\log 3$.
Complete step by step answer:
Here, we have to write the value of $\log 3$ by series expansion.
We know that whenever the base of the logarithm is not specified we should assume the base to be $10$. Thus, we have to find the value of ${\log _{10}}3$.
We also know that ${\log _b}a = \dfrac{{{{\log }_c}a}}{{{{\log }_b}c}} - - - - - $
Therefore, taking $a = 3$, $b = 10$ and $c = e$ in the above equation, we get
$\log 3 = {\log _{10}}3 = \dfrac{{{{\log }_e}3}}{{{{\log }_e}10}} = \dfrac{{\ln 3}}{{\ln 10}} - - - - $.
We know that the value of $\ln 10 \approx 2.3025$
We know that for all $x > \dfrac{1}{2}$, we can write the series expansion of $y = \ln x$ as $\ln x = \sum\limits_{n = 1}^\infty {\dfrac{{{{\left( {\dfrac{{x - 1}}{x}} \right)}^n}}}{n}} $.
Substituting $x = 3$ in the above expression, we have $\ln 3 = \sum\limits_{n = 1}^\infty {\dfrac{{{{\left( {\dfrac{{3 - 1}}{3}} \right)}^n}}}{n}} $.
Now, expanding and simplifying the above expression, we get
$\ln 3 = \sum\limits_{n = 1}^\infty {\dfrac{{{{\left( {\dfrac{{3 - 1}}{3}} \right)}^n}}}{n}} = \dfrac{{{{\left( {\dfrac{2}{3}} \right)}^1}}}{1} + \dfrac{{{{\left( {\dfrac{2}{3}} \right)}^2}}}{2} + \dfrac{{{{\left( {\dfrac{2}{3}} \right)}^3}}}{3} + \dfrac{{{{\left( {\dfrac{2}{3}} \right)}^4}}}{4} + $ - - - - - - - - - - - - - - - - - - - - - -
$\ln 3 = \dfrac{2}{3} + \dfrac{1}{2}{\left( {\dfrac{2}{3}} \right)^2} + \dfrac{1}{3}{\left( {\dfrac{2}{3}} \right)^3} + \dfrac{1}{4}{\left( {\dfrac{2}{3}} \right)^4} + $- - - - - - - - - - - - - - - - - -
So, the series expansion of $\ln 3$ is $\ln 3 = \dfrac{2}{3} + \dfrac{1}{2}{\left( {\dfrac{2}{3}} \right)^2} + \dfrac{1}{3}{\left( {\dfrac{2}{3}} \right)^3} + \dfrac{1}{4}{\left( {\dfrac{2}{3}} \right)^4} + $- - - - - -.
Now, we have to find the value of $\log 3$.
$ \Rightarrow \ln 3 = 0.666 + 0.2217 + 0.0984 + 0.0491 + 0.0262 + $- - - - - - -
$\therefore \ln 3 = 1.0614 $- - - - - -.
Now, $\log 3 = \dfrac{{\ln 3}}{{\ln 10}} = \dfrac{{1.0614}}{{2.3025}} \approx 0.47$.
Thus, the required value of $\log 3$ is $0.47$.
Note: While writing the power series expansion of $y = \ln x$, one must be careful about the domain of the function. Expansion of $y = \ln x$ shows different behaviour for different value of $x$.
Complete step by step answer:
Here, we have to write the value of $\log 3$ by series expansion.
We know that whenever the base of the logarithm is not specified we should assume the base to be $10$. Thus, we have to find the value of ${\log _{10}}3$.
We also know that ${\log _b}a = \dfrac{{{{\log }_c}a}}{{{{\log }_b}c}} - - - - - $
Therefore, taking $a = 3$, $b = 10$ and $c = e$ in the above equation, we get
$\log 3 = {\log _{10}}3 = \dfrac{{{{\log }_e}3}}{{{{\log }_e}10}} = \dfrac{{\ln 3}}{{\ln 10}} - - - - $.
We know that the value of $\ln 10 \approx 2.3025$
We know that for all $x > \dfrac{1}{2}$, we can write the series expansion of $y = \ln x$ as $\ln x = \sum\limits_{n = 1}^\infty {\dfrac{{{{\left( {\dfrac{{x - 1}}{x}} \right)}^n}}}{n}} $.
Substituting $x = 3$ in the above expression, we have $\ln 3 = \sum\limits_{n = 1}^\infty {\dfrac{{{{\left( {\dfrac{{3 - 1}}{3}} \right)}^n}}}{n}} $.
Now, expanding and simplifying the above expression, we get
$\ln 3 = \sum\limits_{n = 1}^\infty {\dfrac{{{{\left( {\dfrac{{3 - 1}}{3}} \right)}^n}}}{n}} = \dfrac{{{{\left( {\dfrac{2}{3}} \right)}^1}}}{1} + \dfrac{{{{\left( {\dfrac{2}{3}} \right)}^2}}}{2} + \dfrac{{{{\left( {\dfrac{2}{3}} \right)}^3}}}{3} + \dfrac{{{{\left( {\dfrac{2}{3}} \right)}^4}}}{4} + $ - - - - - - - - - - - - - - - - - - - - - -
$\ln 3 = \dfrac{2}{3} + \dfrac{1}{2}{\left( {\dfrac{2}{3}} \right)^2} + \dfrac{1}{3}{\left( {\dfrac{2}{3}} \right)^3} + \dfrac{1}{4}{\left( {\dfrac{2}{3}} \right)^4} + $- - - - - - - - - - - - - - - - - -
So, the series expansion of $\ln 3$ is $\ln 3 = \dfrac{2}{3} + \dfrac{1}{2}{\left( {\dfrac{2}{3}} \right)^2} + \dfrac{1}{3}{\left( {\dfrac{2}{3}} \right)^3} + \dfrac{1}{4}{\left( {\dfrac{2}{3}} \right)^4} + $- - - - - -.
Now, we have to find the value of $\log 3$.
$ \Rightarrow \ln 3 = 0.666 + 0.2217 + 0.0984 + 0.0491 + 0.0262 + $- - - - - - -
$\therefore \ln 3 = 1.0614 $- - - - - -.
Now, $\log 3 = \dfrac{{\ln 3}}{{\ln 10}} = \dfrac{{1.0614}}{{2.3025}} \approx 0.47$.
Thus, the required value of $\log 3$ is $0.47$.
Note: While writing the power series expansion of $y = \ln x$, one must be careful about the domain of the function. Expansion of $y = \ln x$ shows different behaviour for different value of $x$.
Recently Updated Pages
Two men on either side of the cliff 90m height observe class 10 maths CBSE

What happens to glucose which enters nephron along class 10 biology CBSE

Cutting of the Chinese melon means A The business and class 10 social science CBSE

Write a dialogue with at least ten utterances between class 10 english CBSE

Show an aquatic food chain using the following organisms class 10 biology CBSE

A circle is inscribed in an equilateral triangle and class 10 maths CBSE

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Which of the following does not have a fundamental class 10 physics CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

