Answer
Verified
425.1k+ views
Hint: We know that the expansion of a function $y = \ln x$ is $\ln x = \sum\limits_{n = 1}^\infty {\dfrac{{{{\left( {\dfrac{{x - 1}}{x}} \right)}^n}}}{n}} $ for all $x > \dfrac{1}{2}$. Substitute $x = 3$ in the above given expansion and simplify the expression to write the value of $\ln 3$ using series expansion. But we have to calculate the value of $\log 3$. So, we should convert $\log 3$ into $\ln 3$. Then, applying this formula we get the required value of $\log 3$.
Complete step by step answer:
Here, we have to write the value of $\log 3$ by series expansion.
We know that whenever the base of the logarithm is not specified we should assume the base to be $10$. Thus, we have to find the value of ${\log _{10}}3$.
We also know that ${\log _b}a = \dfrac{{{{\log }_c}a}}{{{{\log }_b}c}} - - - - - $
Therefore, taking $a = 3$, $b = 10$ and $c = e$ in the above equation, we get
$\log 3 = {\log _{10}}3 = \dfrac{{{{\log }_e}3}}{{{{\log }_e}10}} = \dfrac{{\ln 3}}{{\ln 10}} - - - - $.
We know that the value of $\ln 10 \approx 2.3025$
We know that for all $x > \dfrac{1}{2}$, we can write the series expansion of $y = \ln x$ as $\ln x = \sum\limits_{n = 1}^\infty {\dfrac{{{{\left( {\dfrac{{x - 1}}{x}} \right)}^n}}}{n}} $.
Substituting $x = 3$ in the above expression, we have $\ln 3 = \sum\limits_{n = 1}^\infty {\dfrac{{{{\left( {\dfrac{{3 - 1}}{3}} \right)}^n}}}{n}} $.
Now, expanding and simplifying the above expression, we get
$\ln 3 = \sum\limits_{n = 1}^\infty {\dfrac{{{{\left( {\dfrac{{3 - 1}}{3}} \right)}^n}}}{n}} = \dfrac{{{{\left( {\dfrac{2}{3}} \right)}^1}}}{1} + \dfrac{{{{\left( {\dfrac{2}{3}} \right)}^2}}}{2} + \dfrac{{{{\left( {\dfrac{2}{3}} \right)}^3}}}{3} + \dfrac{{{{\left( {\dfrac{2}{3}} \right)}^4}}}{4} + $ - - - - - - - - - - - - - - - - - - - - - -
$\ln 3 = \dfrac{2}{3} + \dfrac{1}{2}{\left( {\dfrac{2}{3}} \right)^2} + \dfrac{1}{3}{\left( {\dfrac{2}{3}} \right)^3} + \dfrac{1}{4}{\left( {\dfrac{2}{3}} \right)^4} + $- - - - - - - - - - - - - - - - - -
So, the series expansion of $\ln 3$ is $\ln 3 = \dfrac{2}{3} + \dfrac{1}{2}{\left( {\dfrac{2}{3}} \right)^2} + \dfrac{1}{3}{\left( {\dfrac{2}{3}} \right)^3} + \dfrac{1}{4}{\left( {\dfrac{2}{3}} \right)^4} + $- - - - - -.
Now, we have to find the value of $\log 3$.
$ \Rightarrow \ln 3 = 0.666 + 0.2217 + 0.0984 + 0.0491 + 0.0262 + $- - - - - - -
$\therefore \ln 3 = 1.0614 $- - - - - -.
Now, $\log 3 = \dfrac{{\ln 3}}{{\ln 10}} = \dfrac{{1.0614}}{{2.3025}} \approx 0.47$.
Thus, the required value of $\log 3$ is $0.47$.
Note: While writing the power series expansion of $y = \ln x$, one must be careful about the domain of the function. Expansion of $y = \ln x$ shows different behaviour for different value of $x$.
Complete step by step answer:
Here, we have to write the value of $\log 3$ by series expansion.
We know that whenever the base of the logarithm is not specified we should assume the base to be $10$. Thus, we have to find the value of ${\log _{10}}3$.
We also know that ${\log _b}a = \dfrac{{{{\log }_c}a}}{{{{\log }_b}c}} - - - - - $
Therefore, taking $a = 3$, $b = 10$ and $c = e$ in the above equation, we get
$\log 3 = {\log _{10}}3 = \dfrac{{{{\log }_e}3}}{{{{\log }_e}10}} = \dfrac{{\ln 3}}{{\ln 10}} - - - - $.
We know that the value of $\ln 10 \approx 2.3025$
We know that for all $x > \dfrac{1}{2}$, we can write the series expansion of $y = \ln x$ as $\ln x = \sum\limits_{n = 1}^\infty {\dfrac{{{{\left( {\dfrac{{x - 1}}{x}} \right)}^n}}}{n}} $.
Substituting $x = 3$ in the above expression, we have $\ln 3 = \sum\limits_{n = 1}^\infty {\dfrac{{{{\left( {\dfrac{{3 - 1}}{3}} \right)}^n}}}{n}} $.
Now, expanding and simplifying the above expression, we get
$\ln 3 = \sum\limits_{n = 1}^\infty {\dfrac{{{{\left( {\dfrac{{3 - 1}}{3}} \right)}^n}}}{n}} = \dfrac{{{{\left( {\dfrac{2}{3}} \right)}^1}}}{1} + \dfrac{{{{\left( {\dfrac{2}{3}} \right)}^2}}}{2} + \dfrac{{{{\left( {\dfrac{2}{3}} \right)}^3}}}{3} + \dfrac{{{{\left( {\dfrac{2}{3}} \right)}^4}}}{4} + $ - - - - - - - - - - - - - - - - - - - - - -
$\ln 3 = \dfrac{2}{3} + \dfrac{1}{2}{\left( {\dfrac{2}{3}} \right)^2} + \dfrac{1}{3}{\left( {\dfrac{2}{3}} \right)^3} + \dfrac{1}{4}{\left( {\dfrac{2}{3}} \right)^4} + $- - - - - - - - - - - - - - - - - -
So, the series expansion of $\ln 3$ is $\ln 3 = \dfrac{2}{3} + \dfrac{1}{2}{\left( {\dfrac{2}{3}} \right)^2} + \dfrac{1}{3}{\left( {\dfrac{2}{3}} \right)^3} + \dfrac{1}{4}{\left( {\dfrac{2}{3}} \right)^4} + $- - - - - -.
Now, we have to find the value of $\log 3$.
$ \Rightarrow \ln 3 = 0.666 + 0.2217 + 0.0984 + 0.0491 + 0.0262 + $- - - - - - -
$\therefore \ln 3 = 1.0614 $- - - - - -.
Now, $\log 3 = \dfrac{{\ln 3}}{{\ln 10}} = \dfrac{{1.0614}}{{2.3025}} \approx 0.47$.
Thus, the required value of $\log 3$ is $0.47$.
Note: While writing the power series expansion of $y = \ln x$, one must be careful about the domain of the function. Expansion of $y = \ln x$ shows different behaviour for different value of $x$.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE