Answer
Verified
484.2k+ views
Hint-Express ${\log _b}a = \dfrac{{\log a}}{{\log b}}$ and solve the problem.
So, by making use of this formula, now we can write the equation as
\[\left( {{{\log }_3}11} \right)\left( {{{\log }_{11}}13} \right)\left( {{{\log }_{13}}15} \right)\left( {{{\log }_{15}}27} \right)\left( {{{\log }_{27}}81} \right)\]
= $\left( {\dfrac{{\log 11}}{{\log 3}}} \right)\left( {\dfrac{{\log 13}}{{\log 11}}} \right)\left( {\dfrac{{\log 15}}{{\log 13}}} \right)\left( {\dfrac{{\log 27}}{{\log 15}}} \right)\left( {\dfrac{{\log 81}}{{\log 27}}} \right)$
So, from this equation log11, log13, log15, log27 will get cancelled out with each other
So, the remaining terms in the equation would now be
\[\dfrac{{\log 81}}{{\log 3}} = \dfrac{{\log {3^4}}}{{\log 3}}\]
To simplify this further, we will make use of the formula of $\log {a^m} = m\log a$
So, the equation can be further simplified and written as
=$\dfrac{{4\log 3}}{{\log 3}}$
So, from this the terms log3 will get cancelled out and we will have only 4 remaining
So, from this, we get \[\left( {{{\log }_3}11} \right)\left( {{{\log }_{11}}13} \right)\left( {{{\log }_{13}}15} \right)\left( {{{\log }_{15}}27} \right)\left( {{{\log }_{27}}81} \right)\]=4
Note: Make use of the appropriate logarithmic in accordance to the problem given, here we have made use of the formula ${\log _b}a = \dfrac{{\log a}}{{\log b}}$ primarily ,so in accordance to the problem given we have to make use of other logarithmic formulas too.
So, by making use of this formula, now we can write the equation as
\[\left( {{{\log }_3}11} \right)\left( {{{\log }_{11}}13} \right)\left( {{{\log }_{13}}15} \right)\left( {{{\log }_{15}}27} \right)\left( {{{\log }_{27}}81} \right)\]
= $\left( {\dfrac{{\log 11}}{{\log 3}}} \right)\left( {\dfrac{{\log 13}}{{\log 11}}} \right)\left( {\dfrac{{\log 15}}{{\log 13}}} \right)\left( {\dfrac{{\log 27}}{{\log 15}}} \right)\left( {\dfrac{{\log 81}}{{\log 27}}} \right)$
So, from this equation log11, log13, log15, log27 will get cancelled out with each other
So, the remaining terms in the equation would now be
\[\dfrac{{\log 81}}{{\log 3}} = \dfrac{{\log {3^4}}}{{\log 3}}\]
To simplify this further, we will make use of the formula of $\log {a^m} = m\log a$
So, the equation can be further simplified and written as
=$\dfrac{{4\log 3}}{{\log 3}}$
So, from this the terms log3 will get cancelled out and we will have only 4 remaining
So, from this, we get \[\left( {{{\log }_3}11} \right)\left( {{{\log }_{11}}13} \right)\left( {{{\log }_{13}}15} \right)\left( {{{\log }_{15}}27} \right)\left( {{{\log }_{27}}81} \right)\]=4
Note: Make use of the appropriate logarithmic in accordance to the problem given, here we have made use of the formula ${\log _b}a = \dfrac{{\log a}}{{\log b}}$ primarily ,so in accordance to the problem given we have to make use of other logarithmic formulas too.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
Harsha Charita was written by A Kalidasa B Vishakhadatta class 7 social science CBSE
Which are the Top 10 Largest Countries of the World?
Banabhatta wrote Harshavardhanas biography What is class 6 social science CBSE
Difference Between Plant Cell and Animal Cell
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE