
Find the value of ${\text{k}}$, if the points ${\text{A}}\left( {8,1} \right),{\text{ B}}\left( {3, - 4} \right),{\text{ and C}}\left( {2,k} \right)$ are collinear.
Answer
623.4k+ views
Hint: - If three points are given as A,B,C then they will be collinear if the slopes of the line segment between 2 points are equal. I.e. slope of AB = slope of BC.
Given points are
${\text{A}}\left( {8,1} \right),{\text{ B}}\left( {3, - 4} \right),{\text{ and C}}\left( {2,k} \right)$
Now we know two points are collinear if their slopes are equal
Therefore slope of AB $ = $ Slope of BC
Collinearity of points: - Collinear points always lie on the same line.
Now we know
Slope between two points ${\text{ = }}\left( {\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}} \right)$
Consider $A\left( {8,1} \right) \equiv \left( {{x_1},{y_1}} \right),{\text{ }}B\left( {3, - 4} \right) \equiv \left( {{x_2},{y_2}} \right),{\text{ }}C\left( {2,k} \right) \equiv \left( {{x_3},{y_3}} \right)$
Therefore slope of AB${\text{ = }}\left( {\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}} \right){\text{ = }}\dfrac{{ - 4 - 1}}{{3 - 8}} = \dfrac{{ - 5}}{{ - 5}} = 1$
Therefore slope of BC ${\text{ = }}\left( {\dfrac{{{y_3} - {y_2}}}{{{x_3} - {x_2}}}} \right){\text{ = }}\dfrac{{k - \left( { - 4} \right)}}{{2 - 3}} = \dfrac{{k + 4}}{{ - 1}} = - k - 4$
Points are collinear
Therefore slope of AB $ = $ Slope of BC
$\begin{gathered}
\Rightarrow 1 = - k - 4 \\
\Rightarrow k = - 1 - 4 = - 5 \\
\end{gathered} $
So, $k = - 5$ is the required answer.
Note: - If three points are collinear then the area formed by these points should be zero because collinear points always lie on the same line so the area formed by these points is zero. We can also use this property to find the collinearity of the points and the condition is $\left| {\begin{array}{*{20}{c}}
{{x_1}}&{{y_1}}&1 \\
{{x_2}}&{{y_2}}&1 \\
{{x_3}}&{{y_3}}&1
\end{array}} \right| = 0$, with the help of this we can easily calculate the collinearity of the given points.
Given points are
${\text{A}}\left( {8,1} \right),{\text{ B}}\left( {3, - 4} \right),{\text{ and C}}\left( {2,k} \right)$
Now we know two points are collinear if their slopes are equal
Therefore slope of AB $ = $ Slope of BC
Collinearity of points: - Collinear points always lie on the same line.
Now we know
Slope between two points ${\text{ = }}\left( {\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}} \right)$
Consider $A\left( {8,1} \right) \equiv \left( {{x_1},{y_1}} \right),{\text{ }}B\left( {3, - 4} \right) \equiv \left( {{x_2},{y_2}} \right),{\text{ }}C\left( {2,k} \right) \equiv \left( {{x_3},{y_3}} \right)$
Therefore slope of AB${\text{ = }}\left( {\dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}} \right){\text{ = }}\dfrac{{ - 4 - 1}}{{3 - 8}} = \dfrac{{ - 5}}{{ - 5}} = 1$
Therefore slope of BC ${\text{ = }}\left( {\dfrac{{{y_3} - {y_2}}}{{{x_3} - {x_2}}}} \right){\text{ = }}\dfrac{{k - \left( { - 4} \right)}}{{2 - 3}} = \dfrac{{k + 4}}{{ - 1}} = - k - 4$
Points are collinear
Therefore slope of AB $ = $ Slope of BC
$\begin{gathered}
\Rightarrow 1 = - k - 4 \\
\Rightarrow k = - 1 - 4 = - 5 \\
\end{gathered} $
So, $k = - 5$ is the required answer.
Note: - If three points are collinear then the area formed by these points should be zero because collinear points always lie on the same line so the area formed by these points is zero. We can also use this property to find the collinearity of the points and the condition is $\left| {\begin{array}{*{20}{c}}
{{x_1}}&{{y_1}}&1 \\
{{x_2}}&{{y_2}}&1 \\
{{x_3}}&{{y_3}}&1
\end{array}} \right| = 0$, with the help of this we can easily calculate the collinearity of the given points.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

