Find the value of $k$ for which the equation ${x^2} + k\left( {2x + k - 1} \right) + 2 = 0$ has real and equal roots.
Last updated date: 27th Mar 2023
•
Total views: 310.2k
•
Views today: 6.88k
Answer
310.2k+ views
Hint- Here, we will be proceeding by using a discriminant method for quadratic equations.
Given quadratic equation is
${x^2} + k\left( {2x + k - 1} \right) + 2 = 0 \Rightarrow {x^2} + \left( {2k} \right)x + k\left( {k - 1} \right) + 2 = 0 \Rightarrow {x^2} + \left( {2k} \right)x + {k^2} - k + 2 = 0{\text{ }} \to {\text{(1)}}$
Since we know that for any general quadratic equation $a{x^2} + bx + c = 0{\text{ }} \to {\text{(2)}}$, the roots will be real and equal only if the value of the discriminant is zero.
On comparing equations (1) and (2), we get
For the given quadratic equation, $a = 1$, $b = 2k$ and $c = {k^2} - k + 2$
Discriminant of any quadratic equation is given by $d = {b^2} - 4ac$
Using above formula, discriminant of the given quadratic equation is given by $
d = {\left( {2k} \right)^2} - 4 \times 1 \times \left( {{k^2} - k + 2} \right) = 4{k^2} - 4{k^2} + 4k - 8 \\
\Rightarrow d = 4k - 8 \\
$
Now for the given quadratic equation to have real and equal root, put $d = 0$
$ \Rightarrow d = 0 \Rightarrow 4k - 8 = 0 \Rightarrow 4k = 8 \Rightarrow k = 2$
Therefore, the value of $k$ for which the given quadratic equation will have real and equal roots is 2.
Note- In these types of problems, we have to compare the given quadratic equation with the general form of any quadratic equation and then in order to have equal and real roots put the discriminant as zero.
Given quadratic equation is
${x^2} + k\left( {2x + k - 1} \right) + 2 = 0 \Rightarrow {x^2} + \left( {2k} \right)x + k\left( {k - 1} \right) + 2 = 0 \Rightarrow {x^2} + \left( {2k} \right)x + {k^2} - k + 2 = 0{\text{ }} \to {\text{(1)}}$
Since we know that for any general quadratic equation $a{x^2} + bx + c = 0{\text{ }} \to {\text{(2)}}$, the roots will be real and equal only if the value of the discriminant is zero.
On comparing equations (1) and (2), we get
For the given quadratic equation, $a = 1$, $b = 2k$ and $c = {k^2} - k + 2$
Discriminant of any quadratic equation is given by $d = {b^2} - 4ac$
Using above formula, discriminant of the given quadratic equation is given by $
d = {\left( {2k} \right)^2} - 4 \times 1 \times \left( {{k^2} - k + 2} \right) = 4{k^2} - 4{k^2} + 4k - 8 \\
\Rightarrow d = 4k - 8 \\
$
Now for the given quadratic equation to have real and equal root, put $d = 0$
$ \Rightarrow d = 0 \Rightarrow 4k - 8 = 0 \Rightarrow 4k = 8 \Rightarrow k = 2$
Therefore, the value of $k$ for which the given quadratic equation will have real and equal roots is 2.
Note- In these types of problems, we have to compare the given quadratic equation with the general form of any quadratic equation and then in order to have equal and real roots put the discriminant as zero.
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE
