
Find the value of $f(x + 3),$if $f(x) = {x^4} - 12{x^3} + 17{x^2} - 9x + 7.$
Answer
609.3k+ views
Hint: For finding the value of $f(x + 3),$put $x + 3$in place of $x$in $f(x).$
The given function in the question is $f(x) = {x^4} - 12{x^3} + 17{x^2} - 9x + 7$
For $f(x + 3),$we will replace $x$with $x + 3,$we’ll get:
$ \Rightarrow f(x + 3) = {(x + 3)^4} - 12{(x + 3)^3} + 17{(x + 3)^2} - 9(x + 3) + 7$
For ${(x + 3)^4},$we’ll use binomial expansion and for rest of the terms we use formulae as:
$
{(a + b)^3} = {a^3} + {b^3} + 3ab(a + b) \\
{(a + b)^2} = {a^2} + {b^2} + 2ab \\
$
Using these results, we’ll get:
\[
\Rightarrow f(x + 3) = {(^4}{C_0}{x^4}{ + ^4}{C_1}{x^3}.3{ + ^4}{C_2}{x^2}{.3^2}{ + ^4}{C_3}x{.3^3}{ + ^4}{C_4}{.3^4}) - 12({x^3} + {3^3} + 3 \times x \times 3(x + 3)) \\
{\text{ }} + 17({x^2} + 9 + 6x) - 9(x + 3) + 7 \\
\Rightarrow f(x + 3) = ({x^4} + 12{x^3} + 54{x^2} + 108x + 81) - 12({x^3} + 9{x^2} + 27x + 27) + 17{x^2} + 153 + 102x - 9x - 27 + 7 \\
\Rightarrow f(x + 3) = {x^4} + 12{x^3} - 12{x^3} + 54{x^2} - 108{x^2} + 17{x^2} + 108x - 324x + 102x - 9x + 81 - 324 + 153 - 27 + 7 \\
\Rightarrow f(x + 3) = {x^4} - 37{x^2} - 123x - 110 \\
\]
Therefore, the final value of $f(x + 3)$is \[{x^4} - 37{x^2} - 123x - 110\]
Note: For ${(x + 3)^4},$instead of using binomial expansion we can also use general expansion method as:
${(x + 3)^4} = {(x + 3)^2}.{(x + 3)^2},$
${(x + 3)^4} = ({x^2} + 9 + 6x).({x^2} + 9 + 6x)$and we can multiply it step by step. We’ll get the same result.
The given function in the question is $f(x) = {x^4} - 12{x^3} + 17{x^2} - 9x + 7$
For $f(x + 3),$we will replace $x$with $x + 3,$we’ll get:
$ \Rightarrow f(x + 3) = {(x + 3)^4} - 12{(x + 3)^3} + 17{(x + 3)^2} - 9(x + 3) + 7$
For ${(x + 3)^4},$we’ll use binomial expansion and for rest of the terms we use formulae as:
$
{(a + b)^3} = {a^3} + {b^3} + 3ab(a + b) \\
{(a + b)^2} = {a^2} + {b^2} + 2ab \\
$
Using these results, we’ll get:
\[
\Rightarrow f(x + 3) = {(^4}{C_0}{x^4}{ + ^4}{C_1}{x^3}.3{ + ^4}{C_2}{x^2}{.3^2}{ + ^4}{C_3}x{.3^3}{ + ^4}{C_4}{.3^4}) - 12({x^3} + {3^3} + 3 \times x \times 3(x + 3)) \\
{\text{ }} + 17({x^2} + 9 + 6x) - 9(x + 3) + 7 \\
\Rightarrow f(x + 3) = ({x^4} + 12{x^3} + 54{x^2} + 108x + 81) - 12({x^3} + 9{x^2} + 27x + 27) + 17{x^2} + 153 + 102x - 9x - 27 + 7 \\
\Rightarrow f(x + 3) = {x^4} + 12{x^3} - 12{x^3} + 54{x^2} - 108{x^2} + 17{x^2} + 108x - 324x + 102x - 9x + 81 - 324 + 153 - 27 + 7 \\
\Rightarrow f(x + 3) = {x^4} - 37{x^2} - 123x - 110 \\
\]
Therefore, the final value of $f(x + 3)$is \[{x^4} - 37{x^2} - 123x - 110\]
Note: For ${(x + 3)^4},$instead of using binomial expansion we can also use general expansion method as:
${(x + 3)^4} = {(x + 3)^2}.{(x + 3)^2},$
${(x + 3)^4} = ({x^2} + 9 + 6x).({x^2} + 9 + 6x)$and we can multiply it step by step. We’ll get the same result.
Recently Updated Pages
Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is the Full Form of ISI and RAW

Golden Revolution is related to AFood production BOil class 9 social science CBSE

