Find the value of following expression, If $\tan {{\theta }_{1}}=k\times \cot {{\theta }_{2}}$:
\[\dfrac{\cos \left( {{\theta }_{1}}+{{\theta }_{2}} \right)}{\cos \left( {{\theta }_{1}}-{{\theta }_{2}} \right)}\]
A) \[\dfrac{1+k}{1-k}\]
B) \[\dfrac{1-k}{1+k}\]
C) \[\dfrac{k+1}{k-1}\]
D) \[\dfrac{k-1}{k+1}\]
Answer
329.1k+ views
Hint: For solving this question use the formulae \[\cos \left( A+B \right)=\cos A\times \cos B-\sin A\times \sin B\] and \[\cos \left( A-B \right)=\cos A\times \cos B+\sin A\times \sin B\] to expand the given expression and convert it in the form of ‘tan’ to get the final answer.
To find the value of given expression we will write the given values first,
$\tan {{\theta }_{1}}=k\times \cot {{\theta }_{2}}$…………………………….. (1)
To proceed further we should know the formula of ‘cot x’ in terms of ‘tan x’ which is given below,
Formulae:
\[\cot x=\dfrac{1}{\tan x}\]
By using above formula we can write the equation (1) as,
$\therefore \tan {{\theta }_{1}}=k\times \dfrac{1}{\tan {{\theta }_{2}}}$
If we shift $\tan {{\theta }_{2}}$ on the right hand side of the equation we will get,
$\therefore \tan {{\theta }_{1}}\times \tan {{\theta }_{2}}=k$ …………………………………….. (2)
Now to find the value of given expression we will first write it down and assume it as T, therefore we will get,
\[T=\dfrac{\cos \left( {{\theta }_{1}}+{{\theta }_{2}} \right)}{\cos \left( {{\theta }_{1}}-{{\theta }_{2}} \right)}\] ………………………………… (A)
Now to solve further we should know the formulae given below,
Formulae:
\[\cos \left( A+B \right)=\cos A\times \cos B-\sin A\times \sin B\]
\[\cos \left( A-B \right)=\cos A\times \cos B+\sin A\times \sin B\]
By using above formulae we can write T as shown below,
\[\therefore T=\dfrac{\left( \cos {{\theta }_{1}}\times \cos {{\theta }_{2}}-\sin {{\theta }_{1}}\times \sin {{\theta }_{2}} \right)}{\left( \cos {{\theta }_{1}}\times \cos {{\theta }_{2}}+\sin {{\theta }_{1}}\times \sin {{\theta }_{2}} \right)}\]
If we observe above equation and equation (2) then we can say that we have to convert above equation in the form of ‘tan’ as we have the value of \[\tan {{\theta }_{1}}\times \tan {{\theta }_{2}}\].
Therefore to convert the above equation in the form of ‘tan’ we will divide both numerator and denominator by \[\cos {{\theta }_{1}}\times \cos {{\theta }_{2}}\] and therefore we will get,
\[\therefore T=\dfrac{\left( \dfrac{\cos {{\theta }_{1}}\times \cos {{\theta }_{2}}-\sin {{\theta }_{1}}\times \sin {{\theta }_{2}}}{\cos {{\theta }_{1}}\times \cos {{\theta }_{2}}} \right)}{\left( \dfrac{\cos {{\theta }_{1}}\times \cos {{\theta }_{2}}+\sin {{\theta }_{1}}\times \sin {{\theta }_{2}}}{\cos {{\theta }_{1}}\times \cos {{\theta }_{2}}} \right)}\]
By separating the denominators of numerator and denominator we will get,
\[\therefore T=\dfrac{\left( \dfrac{\cos {{\theta }_{1}}\times \cos {{\theta }_{2}}}{\cos {{\theta }_{1}}\times \cos {{\theta }_{2}}} \right)-\left( \dfrac{\sin {{\theta }_{1}}\times \sin {{\theta }_{2}}}{\cos {{\theta }_{1}}\times \cos {{\theta }_{2}}} \right)}{\left( \dfrac{\cos {{\theta }_{1}}\times \cos {{\theta }_{2}}}{\cos {{\theta }_{1}}\times \cos {{\theta }_{2}}} \right)+\left( \dfrac{\sin {{\theta }_{1}}\times \sin {{\theta }_{2}}}{\cos {{\theta }_{1}}\times \cos {{\theta }_{2}}} \right)}\]
As we all know that if any term is divided by itself we will get the answer equal to ‘1’, therefore above equation will become,
\[\therefore T=\dfrac{1-\left( \dfrac{\sin {{\theta }_{1}}\times \sin {{\theta }_{2}}}{\cos {{\theta }_{1}}\times \cos {{\theta }_{2}}} \right)}{1+\left( \dfrac{\sin {{\theta }_{1}}\times \sin {{\theta }_{2}}}{\cos {{\theta }_{1}}\times \cos {{\theta }_{2}}} \right)}\] …………………………………….. (3)
Now, to proceed further in the solution we should know the formula given below,
Formula:
\[\dfrac{\sin x}{\cos x}=\tan x\]
By using above formula we can write the equation (3) as shown below,
\[\therefore T=\dfrac{1-\tan {{\theta }_{1}}\times \tan {{\theta }_{2}}}{1+\tan {{\theta }_{1}}\times \tan {{\theta }_{2}}}\]
If we put the value of equation (2) in above equation we will get,
\[\therefore T=\dfrac{1-k}{1+k}\]
If we compare above equation with equation (A) we will get,
\[\therefore T=\dfrac{\cos \left( {{\theta }_{1}}+{{\theta }_{2}} \right)}{\cos \left( {{\theta }_{1}}-{{\theta }_{2}} \right)}=\dfrac{1-k}{1+k}\]
\[\therefore \dfrac{\cos \left( {{\theta }_{1}}+{{\theta }_{2}} \right)}{\cos \left( {{\theta }_{1}}-{{\theta }_{2}} \right)}=\dfrac{1-k}{1+k}\]
Therefore the value of \[\dfrac{\cos \left( {{\theta }_{1}}+{{\theta }_{2}} \right)}{\cos \left( {{\theta }_{1}}-{{\theta }_{2}} \right)}\] is given b, \[\dfrac{1-k}{1+k}\] .
Therefore Option (b) is correct.
Note- Do remember the adjustment of dividing the expression by \[\cos {{\theta }_{1}}\times \cos {{\theta }_{2}}\] after expansion using formula to convert it in to the form of ‘tan’ otherwise the solution will become very lengthy as there will occur need of conversion of first equation.
To find the value of given expression we will write the given values first,
$\tan {{\theta }_{1}}=k\times \cot {{\theta }_{2}}$…………………………….. (1)
To proceed further we should know the formula of ‘cot x’ in terms of ‘tan x’ which is given below,
Formulae:
\[\cot x=\dfrac{1}{\tan x}\]
By using above formula we can write the equation (1) as,
$\therefore \tan {{\theta }_{1}}=k\times \dfrac{1}{\tan {{\theta }_{2}}}$
If we shift $\tan {{\theta }_{2}}$ on the right hand side of the equation we will get,
$\therefore \tan {{\theta }_{1}}\times \tan {{\theta }_{2}}=k$ …………………………………….. (2)
Now to find the value of given expression we will first write it down and assume it as T, therefore we will get,
\[T=\dfrac{\cos \left( {{\theta }_{1}}+{{\theta }_{2}} \right)}{\cos \left( {{\theta }_{1}}-{{\theta }_{2}} \right)}\] ………………………………… (A)
Now to solve further we should know the formulae given below,
Formulae:
\[\cos \left( A+B \right)=\cos A\times \cos B-\sin A\times \sin B\]
\[\cos \left( A-B \right)=\cos A\times \cos B+\sin A\times \sin B\]
By using above formulae we can write T as shown below,
\[\therefore T=\dfrac{\left( \cos {{\theta }_{1}}\times \cos {{\theta }_{2}}-\sin {{\theta }_{1}}\times \sin {{\theta }_{2}} \right)}{\left( \cos {{\theta }_{1}}\times \cos {{\theta }_{2}}+\sin {{\theta }_{1}}\times \sin {{\theta }_{2}} \right)}\]
If we observe above equation and equation (2) then we can say that we have to convert above equation in the form of ‘tan’ as we have the value of \[\tan {{\theta }_{1}}\times \tan {{\theta }_{2}}\].
Therefore to convert the above equation in the form of ‘tan’ we will divide both numerator and denominator by \[\cos {{\theta }_{1}}\times \cos {{\theta }_{2}}\] and therefore we will get,
\[\therefore T=\dfrac{\left( \dfrac{\cos {{\theta }_{1}}\times \cos {{\theta }_{2}}-\sin {{\theta }_{1}}\times \sin {{\theta }_{2}}}{\cos {{\theta }_{1}}\times \cos {{\theta }_{2}}} \right)}{\left( \dfrac{\cos {{\theta }_{1}}\times \cos {{\theta }_{2}}+\sin {{\theta }_{1}}\times \sin {{\theta }_{2}}}{\cos {{\theta }_{1}}\times \cos {{\theta }_{2}}} \right)}\]
By separating the denominators of numerator and denominator we will get,
\[\therefore T=\dfrac{\left( \dfrac{\cos {{\theta }_{1}}\times \cos {{\theta }_{2}}}{\cos {{\theta }_{1}}\times \cos {{\theta }_{2}}} \right)-\left( \dfrac{\sin {{\theta }_{1}}\times \sin {{\theta }_{2}}}{\cos {{\theta }_{1}}\times \cos {{\theta }_{2}}} \right)}{\left( \dfrac{\cos {{\theta }_{1}}\times \cos {{\theta }_{2}}}{\cos {{\theta }_{1}}\times \cos {{\theta }_{2}}} \right)+\left( \dfrac{\sin {{\theta }_{1}}\times \sin {{\theta }_{2}}}{\cos {{\theta }_{1}}\times \cos {{\theta }_{2}}} \right)}\]
As we all know that if any term is divided by itself we will get the answer equal to ‘1’, therefore above equation will become,
\[\therefore T=\dfrac{1-\left( \dfrac{\sin {{\theta }_{1}}\times \sin {{\theta }_{2}}}{\cos {{\theta }_{1}}\times \cos {{\theta }_{2}}} \right)}{1+\left( \dfrac{\sin {{\theta }_{1}}\times \sin {{\theta }_{2}}}{\cos {{\theta }_{1}}\times \cos {{\theta }_{2}}} \right)}\] …………………………………….. (3)
Now, to proceed further in the solution we should know the formula given below,
Formula:
\[\dfrac{\sin x}{\cos x}=\tan x\]
By using above formula we can write the equation (3) as shown below,
\[\therefore T=\dfrac{1-\tan {{\theta }_{1}}\times \tan {{\theta }_{2}}}{1+\tan {{\theta }_{1}}\times \tan {{\theta }_{2}}}\]
If we put the value of equation (2) in above equation we will get,
\[\therefore T=\dfrac{1-k}{1+k}\]
If we compare above equation with equation (A) we will get,
\[\therefore T=\dfrac{\cos \left( {{\theta }_{1}}+{{\theta }_{2}} \right)}{\cos \left( {{\theta }_{1}}-{{\theta }_{2}} \right)}=\dfrac{1-k}{1+k}\]
\[\therefore \dfrac{\cos \left( {{\theta }_{1}}+{{\theta }_{2}} \right)}{\cos \left( {{\theta }_{1}}-{{\theta }_{2}} \right)}=\dfrac{1-k}{1+k}\]
Therefore the value of \[\dfrac{\cos \left( {{\theta }_{1}}+{{\theta }_{2}} \right)}{\cos \left( {{\theta }_{1}}-{{\theta }_{2}} \right)}\] is given b, \[\dfrac{1-k}{1+k}\] .
Therefore Option (b) is correct.
Note- Do remember the adjustment of dividing the expression by \[\cos {{\theta }_{1}}\times \cos {{\theta }_{2}}\] after expansion using formula to convert it in to the form of ‘tan’ otherwise the solution will become very lengthy as there will occur need of conversion of first equation.
Last updated date: 02nd Jun 2023
•
Total views: 329.1k
•
Views today: 5.85k
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE
