
Find the value of $\dfrac{{\cos {{45}^ \circ }}}{{\sec {{30}^ \circ } + {\text{cosec}}{{30}^ \circ }}}$.
Answer
605.4k+ views
Hint: Put the value of $\cos {45^ \circ }$, $\sec {30^ \circ }$ and ${\text{cosec}}{30^ \circ }$ in the expression and find out its value.
Complete step-by-step answer:
According to the question, we have to calculate the value of $\dfrac{{\cos {{45}^ \circ }}}{{\sec {{30}^ \circ } + {\text{cosec}}{{30}^ \circ }}}$ .
We know that $\cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }},\sec {30^ \circ } = \dfrac{2}{{\sqrt 3 }}$ and ${\text{cosec}}{30^ \circ } = 2$. So, putting all these values in the above expression, we’ll get:
$
\Rightarrow \dfrac{{\cos {{45}^ \circ }}}{{\sec {{30}^ \circ } + {\text{cosec}}{{30}^ \circ }}} = \dfrac{{\dfrac{1}{{\sqrt 2 }}}}{{\dfrac{2}{{\sqrt 3 }} + 2}}, \\
\Rightarrow \dfrac{{\cos {{45}^ \circ }}}{{\sec {{30}^ \circ } + {\text{cosec}}{{30}^ \circ }}} = \dfrac{{\dfrac{1}{{\sqrt 2 }}}}{{\dfrac{{2 + 2\sqrt 3 }}{{\sqrt 3 }}}}, \\
\Rightarrow \dfrac{{\cos {{45}^ \circ }}}{{\sec {{30}^ \circ } + {\text{cosec}}{{30}^ \circ }}} = \dfrac{{\sqrt 3 }}{{\sqrt 2 \left( {2 + 2\sqrt 3 } \right)}} \\
$
Therefore the value of $\dfrac{{\cos {{45}^ \circ }}}{{\sec {{30}^ \circ } + {\text{cosec}}{{30}^ \circ }}}$ is $\dfrac{{\sqrt 3 }}{{\sqrt 2 \left( {2 + 2\sqrt 3 } \right)}}$.
Note: Since denominator is an irrational number in the above answer, we can also rationalize it to convert it into another form. In rationalization, we multiply the numerator and denominator by the conjugate of the denominator.
Complete step-by-step answer:
According to the question, we have to calculate the value of $\dfrac{{\cos {{45}^ \circ }}}{{\sec {{30}^ \circ } + {\text{cosec}}{{30}^ \circ }}}$ .
We know that $\cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }},\sec {30^ \circ } = \dfrac{2}{{\sqrt 3 }}$ and ${\text{cosec}}{30^ \circ } = 2$. So, putting all these values in the above expression, we’ll get:
$
\Rightarrow \dfrac{{\cos {{45}^ \circ }}}{{\sec {{30}^ \circ } + {\text{cosec}}{{30}^ \circ }}} = \dfrac{{\dfrac{1}{{\sqrt 2 }}}}{{\dfrac{2}{{\sqrt 3 }} + 2}}, \\
\Rightarrow \dfrac{{\cos {{45}^ \circ }}}{{\sec {{30}^ \circ } + {\text{cosec}}{{30}^ \circ }}} = \dfrac{{\dfrac{1}{{\sqrt 2 }}}}{{\dfrac{{2 + 2\sqrt 3 }}{{\sqrt 3 }}}}, \\
\Rightarrow \dfrac{{\cos {{45}^ \circ }}}{{\sec {{30}^ \circ } + {\text{cosec}}{{30}^ \circ }}} = \dfrac{{\sqrt 3 }}{{\sqrt 2 \left( {2 + 2\sqrt 3 } \right)}} \\
$
Therefore the value of $\dfrac{{\cos {{45}^ \circ }}}{{\sec {{30}^ \circ } + {\text{cosec}}{{30}^ \circ }}}$ is $\dfrac{{\sqrt 3 }}{{\sqrt 2 \left( {2 + 2\sqrt 3 } \right)}}$.
Note: Since denominator is an irrational number in the above answer, we can also rationalize it to convert it into another form. In rationalization, we multiply the numerator and denominator by the conjugate of the denominator.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Class 9 Question and Answer - Your Ultimate Solutions Guide

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is pollution? How many types of pollution? Define it

What is the Full Form of ISI and RAW


