
Find the value of $\dfrac{16\sin {{80}^{\circ }}\sin {{65}^{\circ }}\sin {{35}^{\circ }}}{4\cos {{10}^{\circ }}\cos {{25}^{\circ }}\cos {{55}^{\circ }}}$?
(a) 1
(b) 2
(c) 3
(d) 4
Answer
573.6k+ views
Hint: We start solving the problem by assigning the variable for the required value of $\dfrac{16\sin {{80}^{\circ }}\sin {{65}^{\circ }}\sin {{35}^{\circ }}}{4\cos {{10}^{\circ }}\cos {{25}^{\circ }}\cos {{55}^{\circ }}}$. We then make the arrangements in the numerator for the angles present inside the sine terms. We then recall the relation between the sine and cosine functions in the first quadrant as $\sin \left( {{90}^{\circ }}-\theta \right)=\cos \theta $. We use this relation and make the necessary calculations to get the required value.
Complete step by step answer:
According to the problem, we need to find the value of $\dfrac{16\sin {{80}^{\circ }}\sin {{65}^{\circ }}\sin {{35}^{\circ }}}{4\cos {{10}^{\circ }}\cos {{25}^{\circ }}\cos {{55}^{\circ }}}$.
Let us assume the value of $\dfrac{16\sin {{80}^{\circ }}\sin {{65}^{\circ }}\sin {{35}^{\circ }}}{4\cos {{10}^{\circ }}\cos {{25}^{\circ }}\cos {{55}^{\circ }}}$ be ‘d’.
So, we have $d=\dfrac{16\sin {{80}^{\circ }}\sin {{65}^{\circ }}\sin {{35}^{\circ }}}{4\cos {{10}^{\circ }}\cos {{25}^{\circ }}\cos {{55}^{\circ }}}$.
\[\Rightarrow d=\dfrac{16\sin \left( {{90}^{\circ }}-{{10}^{\circ }} \right)\sin \left( {{90}^{\circ }}-{{25}^{\circ }} \right)\sin \left( {{90}^{\circ }}-{{55}^{\circ }} \right)}{4\cos {{10}^{\circ }}\cos {{25}^{\circ }}\cos {{55}^{\circ }}}\] ---(1).
We know that the relation between sine and cosine functions present in the first quadrant is defined as $\sin \left( {{90}^{\circ }}-\theta \right)=\cos \theta $. We use this relation in equation (1).
So, we get \[d=\dfrac{16\cos {{10}^{\circ }}\cos {{25}^{\circ }}\cos {{55}^{\circ }}}{4\cos {{10}^{\circ }}\cos {{25}^{\circ }}\cos {{55}^{\circ }}}\].
$\Rightarrow d=\dfrac{16}{4}$.
$\Rightarrow d=4$.
So, we have found the value of $\dfrac{16\sin {{80}^{\circ }}\sin {{65}^{\circ }}\sin {{35}^{\circ }}}{4\cos {{10}^{\circ }}\cos {{25}^{\circ }}\cos {{55}^{\circ }}}$ as 4.
So, the correct answer is “Option d”.
Note: We can also use the relation $\cos \left( {{90}^{\circ }}-\theta \right)=\sin \theta $ by making the arrangements for the angles present in the denominator. We can also solve this problem as follows.
$\Rightarrow d=\dfrac{16\sin {{80}^{\circ }}\sin {{65}^{\circ }}\sin {{35}^{\circ }}}{4\cos {{10}^{\circ }}\cos {{25}^{\circ }}\cos {{55}^{\circ }}}$.
$\Rightarrow d=\dfrac{8\sin {{80}^{\circ }}\left( 2\sin {{65}^{\circ }}\sin {{35}^{\circ }} \right)}{2\cos {{10}^{\circ }}\left( 2\cos {{55}^{\circ }}\cos {{25}^{\circ }} \right)}$ ---(2).
From the product to sum trigonometric identities, we know that $2\sin A\sin B=\cos \left( A-B \right)-\cos \left( A+B \right)$ and $2\cos A\cos B=\cos \left( A+B \right)+\cos \left( A-B \right)$. We use these relations in equation (2).
$\Rightarrow d=\dfrac{8\sin {{80}^{\circ }}\left( \cos \left( {{65}^{\circ }}-{{35}^{\circ }} \right)-\cos \left( {{65}^{\circ }}+{{35}^{\circ }} \right) \right)}{2\cos {{10}^{\circ }}\left( \cos \left( {{55}^{\circ }}+{{25}^{\circ }} \right)+\cos \left( {{55}^{\circ }}-{{25}^{\circ }} \right) \right)}$.
$\Rightarrow d=\dfrac{8\sin {{80}^{\circ }}\left( \cos {{30}^{\circ }}-\cos {{100}^{\circ }} \right)}{2\cos {{10}^{\circ }}\left( \cos {{80}^{\circ }}+\cos {{30}^{\circ }} \right)}$.
$\Rightarrow d=\dfrac{8\sin {{80}^{\circ }}\cos {{30}^{\circ }}-8\sin {{80}^{\circ }}\cos {{100}^{\circ }}}{2\cos {{10}^{\circ }}\cos {{80}^{\circ }}+2\cos {{10}^{\circ }}\cos {{30}^{\circ }}}$.
$\Rightarrow d=\dfrac{4\left( 2\sin {{80}^{\circ }}\cos {{30}^{\circ }} \right)-4\left( 2\cos {{100}^{\circ }}\sin {{80}^{\circ }} \right)}{2\cos {{80}^{\circ }}\cos {{10}^{\circ }}+2\cos {{30}^{\circ }}\cos {{10}^{\circ }}}$ ---(3).
From the product to sum trigonometric identities, we know that $2\sin A\cos B=\sin \left( A+B \right)+\sin \left( A-B \right)$ and $2\cos A\sin B=\sin \left( A+B \right)-\sin \left( A-B \right)$. We use these relations in equation (3).
$\Rightarrow d=\dfrac{4\left( \sin \left( {{80}^{\circ }}+{{30}^{\circ }} \right)+\sin \left( {{80}^{\circ }}-{{30}^{\circ }} \right) \right)-4\left( \sin \left( {{100}^{\circ }}+{{80}^{\circ }} \right)-\sin \left( {{100}^{\circ }}-{{80}^{\circ }} \right) \right)}{\left( \cos \left( {{80}^{\circ }}+{{10}^{\circ }} \right)+\cos \left( {{80}^{\circ }}-{{10}^{\circ }} \right) \right)+\left( \cos \left( {{30}^{\circ }}+{{10}^{\circ }} \right)+\cos \left( {{30}^{\circ }}-{{10}^{\circ }} \right) \right)}$.
\[\Rightarrow d=\dfrac{4\left( \sin {{110}^{\circ }}+\sin {{50}^{\circ }} \right)-4\left( \sin {{180}^{\circ }}-\sin {{30}^{\circ }} \right)}{\left( \cos {{90}^{\circ }}+\cos {{70}^{\circ }} \right)+\left( \cos {{40}^{\circ }}+\cos {{20}^{\circ }} \right)}\].
\[\Rightarrow d=\dfrac{4\left( \sin {{110}^{\circ }}+\sin {{50}^{\circ }}+\sin {{30}^{\circ }} \right)}{\cos {{70}^{\circ }}+\cos {{40}^{\circ }}+\cos {{20}^{\circ }}}\].
\[\Rightarrow d=\dfrac{4\left( \sin \left( {{90}^{\circ }}+{{20}^{\circ }} \right)+\sin \left( {{90}^{\circ }}-{{20}^{\circ }} \right)+\sin \left( {{90}^{\circ }}-{{40}^{\circ }} \right) \right)}{\cos {{70}^{\circ }}+\cos {{40}^{\circ }}+\cos {{20}^{\circ }}}\].
We know that $\sin \left( {{90}^{\circ }}-\theta \right)=\cos \theta $ and $\sin \left( {{90}^{\circ }}+\theta \right)=\cos \theta $.
\[\Rightarrow d=\dfrac{4\left( \cos {{70}^{\circ }}+\cos {{20}^{\circ }}+\cos {{40}^{\circ }} \right)}{\cos {{70}^{\circ }}+\cos {{40}^{\circ }}+\cos {{20}^{\circ }}}\].
\[\Rightarrow d=4\].
Complete step by step answer:
According to the problem, we need to find the value of $\dfrac{16\sin {{80}^{\circ }}\sin {{65}^{\circ }}\sin {{35}^{\circ }}}{4\cos {{10}^{\circ }}\cos {{25}^{\circ }}\cos {{55}^{\circ }}}$.
Let us assume the value of $\dfrac{16\sin {{80}^{\circ }}\sin {{65}^{\circ }}\sin {{35}^{\circ }}}{4\cos {{10}^{\circ }}\cos {{25}^{\circ }}\cos {{55}^{\circ }}}$ be ‘d’.
So, we have $d=\dfrac{16\sin {{80}^{\circ }}\sin {{65}^{\circ }}\sin {{35}^{\circ }}}{4\cos {{10}^{\circ }}\cos {{25}^{\circ }}\cos {{55}^{\circ }}}$.
\[\Rightarrow d=\dfrac{16\sin \left( {{90}^{\circ }}-{{10}^{\circ }} \right)\sin \left( {{90}^{\circ }}-{{25}^{\circ }} \right)\sin \left( {{90}^{\circ }}-{{55}^{\circ }} \right)}{4\cos {{10}^{\circ }}\cos {{25}^{\circ }}\cos {{55}^{\circ }}}\] ---(1).
We know that the relation between sine and cosine functions present in the first quadrant is defined as $\sin \left( {{90}^{\circ }}-\theta \right)=\cos \theta $. We use this relation in equation (1).
So, we get \[d=\dfrac{16\cos {{10}^{\circ }}\cos {{25}^{\circ }}\cos {{55}^{\circ }}}{4\cos {{10}^{\circ }}\cos {{25}^{\circ }}\cos {{55}^{\circ }}}\].
$\Rightarrow d=\dfrac{16}{4}$.
$\Rightarrow d=4$.
So, we have found the value of $\dfrac{16\sin {{80}^{\circ }}\sin {{65}^{\circ }}\sin {{35}^{\circ }}}{4\cos {{10}^{\circ }}\cos {{25}^{\circ }}\cos {{55}^{\circ }}}$ as 4.
So, the correct answer is “Option d”.
Note: We can also use the relation $\cos \left( {{90}^{\circ }}-\theta \right)=\sin \theta $ by making the arrangements for the angles present in the denominator. We can also solve this problem as follows.
$\Rightarrow d=\dfrac{16\sin {{80}^{\circ }}\sin {{65}^{\circ }}\sin {{35}^{\circ }}}{4\cos {{10}^{\circ }}\cos {{25}^{\circ }}\cos {{55}^{\circ }}}$.
$\Rightarrow d=\dfrac{8\sin {{80}^{\circ }}\left( 2\sin {{65}^{\circ }}\sin {{35}^{\circ }} \right)}{2\cos {{10}^{\circ }}\left( 2\cos {{55}^{\circ }}\cos {{25}^{\circ }} \right)}$ ---(2).
From the product to sum trigonometric identities, we know that $2\sin A\sin B=\cos \left( A-B \right)-\cos \left( A+B \right)$ and $2\cos A\cos B=\cos \left( A+B \right)+\cos \left( A-B \right)$. We use these relations in equation (2).
$\Rightarrow d=\dfrac{8\sin {{80}^{\circ }}\left( \cos \left( {{65}^{\circ }}-{{35}^{\circ }} \right)-\cos \left( {{65}^{\circ }}+{{35}^{\circ }} \right) \right)}{2\cos {{10}^{\circ }}\left( \cos \left( {{55}^{\circ }}+{{25}^{\circ }} \right)+\cos \left( {{55}^{\circ }}-{{25}^{\circ }} \right) \right)}$.
$\Rightarrow d=\dfrac{8\sin {{80}^{\circ }}\left( \cos {{30}^{\circ }}-\cos {{100}^{\circ }} \right)}{2\cos {{10}^{\circ }}\left( \cos {{80}^{\circ }}+\cos {{30}^{\circ }} \right)}$.
$\Rightarrow d=\dfrac{8\sin {{80}^{\circ }}\cos {{30}^{\circ }}-8\sin {{80}^{\circ }}\cos {{100}^{\circ }}}{2\cos {{10}^{\circ }}\cos {{80}^{\circ }}+2\cos {{10}^{\circ }}\cos {{30}^{\circ }}}$.
$\Rightarrow d=\dfrac{4\left( 2\sin {{80}^{\circ }}\cos {{30}^{\circ }} \right)-4\left( 2\cos {{100}^{\circ }}\sin {{80}^{\circ }} \right)}{2\cos {{80}^{\circ }}\cos {{10}^{\circ }}+2\cos {{30}^{\circ }}\cos {{10}^{\circ }}}$ ---(3).
From the product to sum trigonometric identities, we know that $2\sin A\cos B=\sin \left( A+B \right)+\sin \left( A-B \right)$ and $2\cos A\sin B=\sin \left( A+B \right)-\sin \left( A-B \right)$. We use these relations in equation (3).
$\Rightarrow d=\dfrac{4\left( \sin \left( {{80}^{\circ }}+{{30}^{\circ }} \right)+\sin \left( {{80}^{\circ }}-{{30}^{\circ }} \right) \right)-4\left( \sin \left( {{100}^{\circ }}+{{80}^{\circ }} \right)-\sin \left( {{100}^{\circ }}-{{80}^{\circ }} \right) \right)}{\left( \cos \left( {{80}^{\circ }}+{{10}^{\circ }} \right)+\cos \left( {{80}^{\circ }}-{{10}^{\circ }} \right) \right)+\left( \cos \left( {{30}^{\circ }}+{{10}^{\circ }} \right)+\cos \left( {{30}^{\circ }}-{{10}^{\circ }} \right) \right)}$.
\[\Rightarrow d=\dfrac{4\left( \sin {{110}^{\circ }}+\sin {{50}^{\circ }} \right)-4\left( \sin {{180}^{\circ }}-\sin {{30}^{\circ }} \right)}{\left( \cos {{90}^{\circ }}+\cos {{70}^{\circ }} \right)+\left( \cos {{40}^{\circ }}+\cos {{20}^{\circ }} \right)}\].
\[\Rightarrow d=\dfrac{4\left( \sin {{110}^{\circ }}+\sin {{50}^{\circ }}+\sin {{30}^{\circ }} \right)}{\cos {{70}^{\circ }}+\cos {{40}^{\circ }}+\cos {{20}^{\circ }}}\].
\[\Rightarrow d=\dfrac{4\left( \sin \left( {{90}^{\circ }}+{{20}^{\circ }} \right)+\sin \left( {{90}^{\circ }}-{{20}^{\circ }} \right)+\sin \left( {{90}^{\circ }}-{{40}^{\circ }} \right) \right)}{\cos {{70}^{\circ }}+\cos {{40}^{\circ }}+\cos {{20}^{\circ }}}\].
We know that $\sin \left( {{90}^{\circ }}-\theta \right)=\cos \theta $ and $\sin \left( {{90}^{\circ }}+\theta \right)=\cos \theta $.
\[\Rightarrow d=\dfrac{4\left( \cos {{70}^{\circ }}+\cos {{20}^{\circ }}+\cos {{40}^{\circ }} \right)}{\cos {{70}^{\circ }}+\cos {{40}^{\circ }}+\cos {{20}^{\circ }}}\].
\[\Rightarrow d=4\].
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

State and prove converse of BPT Basic Proportionality class 10 maths CBSE

