Find the value of A if $\tan 2A = \cot \left( {A - {{18}^ \circ }} \right)$, where 2A is an acute angle.
Last updated date: 15th Mar 2023
•
Total views: 303.6k
•
Views today: 6.83k
Answer
303.6k+ views
Hint: In order to solve this question we have to convert tan in terms of $\cot {\text{ }} as \left[ {{\text{ tan}}\theta = \left( {\cot {{90}^ \circ } - \theta } \right)} \right]$ by doing so we will get both sides in terms of cot.
Complete step-by-step answer:
Now, we have given that
If $\tan 2A = \cot \left( {A - {{18}^ \circ }} \right)$
And 2A is an acute angle.
Now we have to find the value of A.
Now this question is related to trigonometric.
Ratios of complementary angles,
Complementary Angles- Two angles are said to be complementary if their sum is equal to ${90^ \circ }$.
Also we know that,
$\cot \left( {{{90}^ \circ } - x} \right) = \tan x$ ------(1)
According to the given question,
$\tan 2A = \cot \left( {A - {{18}^ \circ }} \right)$
Since, $2A$ is an acute angle thus from equation(1) we get,
$\cot \left( {{{90}^ \circ } - 2A} \right) = \cot \left( {A - {{18}^ \circ }} \right)$
Now, eliminate cot from both sides, we get
${90^ \circ } - 2A = A - {18^ \circ }$
$\Rightarrow$ $3A = {108^ \circ }$
$\Rightarrow$ $A = \dfrac{{{{108}^ \circ }}}{3}$
$\Rightarrow$ $A = {36^ \circ }$
Thus, the value of A is ${36^ \circ }$.
Note: Whenever we face such types of questions, the key concept is that we must covert tan in terms of cot or vice versa. It is clearly visible that here $2A$ represents an acute angle. First we will use the identity $\tan \theta = \cot \left( {{{90}^ \circ } - \theta } \right)$ then eliminate cot (or tan) then by simplifying the equations we will get our required answer.
Complete step-by-step answer:
Now, we have given that
If $\tan 2A = \cot \left( {A - {{18}^ \circ }} \right)$
And 2A is an acute angle.
Now we have to find the value of A.
Now this question is related to trigonometric.
Ratios of complementary angles,
Complementary Angles- Two angles are said to be complementary if their sum is equal to ${90^ \circ }$.
Also we know that,
$\cot \left( {{{90}^ \circ } - x} \right) = \tan x$ ------(1)
According to the given question,
$\tan 2A = \cot \left( {A - {{18}^ \circ }} \right)$
Since, $2A$ is an acute angle thus from equation(1) we get,
$\cot \left( {{{90}^ \circ } - 2A} \right) = \cot \left( {A - {{18}^ \circ }} \right)$
Now, eliminate cot from both sides, we get
${90^ \circ } - 2A = A - {18^ \circ }$
$\Rightarrow$ $3A = {108^ \circ }$
$\Rightarrow$ $A = \dfrac{{{{108}^ \circ }}}{3}$
$\Rightarrow$ $A = {36^ \circ }$
Thus, the value of A is ${36^ \circ }$.
Note: Whenever we face such types of questions, the key concept is that we must covert tan in terms of cot or vice versa. It is clearly visible that here $2A$ represents an acute angle. First we will use the identity $\tan \theta = \cot \left( {{{90}^ \circ } - \theta } \right)$ then eliminate cot (or tan) then by simplifying the equations we will get our required answer.
Recently Updated Pages
If a spring has a period T and is cut into the n equal class 11 physics CBSE

A planet moves around the sun in nearly circular orbit class 11 physics CBSE

In any triangle AB2 BC4 CA3 and D is the midpoint of class 11 maths JEE_Main

In a Delta ABC 2asin dfracAB+C2 is equal to IIT Screening class 11 maths JEE_Main

If in aDelta ABCangle A 45circ angle C 60circ then class 11 maths JEE_Main

If in a triangle rmABC side a sqrt 3 + 1rmcm and angle class 11 maths JEE_Main

Trending doubts
Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

List out three methods of soil conservation

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE
