
Find the value of a and b.
$ \dfrac{{7 + \sqrt 5 }}{{7 - \sqrt 5 }} - \dfrac{{7\sqrt 5 }}{{7 + \sqrt 5 }} = a + \dfrac{{7\sqrt 5 }}{{11}}b $
Answer
593.1k+ views
Hint: To solve the function which involve roots where factoring is not possible we have to use the process of rationalization and also use algebraic formula \[\left( {a + b} \right){\text{ }}\left( {a - b} \right) = {a^2} - {b^2}\] whenever required.
Complete step by step solution:
Mark the equation and solve the equations separately by marking it as (I) and (II),
\[\mathop {\dfrac{{7 + \sqrt 5 }}{{7 - \sqrt 5 }}}\limits_{(I)} - \mathop {\dfrac{{7\sqrt 5 }}{{7 + \sqrt 5 }}}\limits_{(II)} = a + \dfrac{{7\sqrt 5 }}{{11}}b\]
(I) \[\dfrac{{7 + \sqrt 5 }}{{7 - \sqrt 5 }}\]
On rationalizing the term,
We get,
\[\dfrac{{7 + \sqrt 5 }}{{7 - \sqrt 5 }} \times \dfrac{{7 + \sqrt 5 }}{{7 + \sqrt 5 }},\,\,we\,get\]
$ = \dfrac{{(7 + \sqrt 5 )(7 + \sqrt 5 )}}{{(7 - \sqrt 5 )(7 + \sqrt 5 )}} $
Use the formula \[\left( {a + b} \right){\text{ }}\left( {a - b} \right) = {a^2} - {b^2}\]
\[
(7 + \sqrt 5 )(7 - \sqrt 5 ) \\
= {(7)^2} - {(\sqrt 5 )^2} \\
= 49 - 5 \\
= 44 \\
\]
And use formula \[{(a + b)^2} = {a^2} + 2ab + {b^2}\]
\[
{\left( {7 + \sqrt 5 } \right)^2} = {(7)^2} + 2\sqrt 5 + {(\sqrt 5 )^2} \\
= 49 + 14\sqrt 5 + 5 \\
\]
After solving the two expressions we get,
$
\dfrac{{49 + 14\sqrt 5 + 5}}{{44}} \\
= \dfrac{{54 + 14\sqrt 5 }}{{44}}....(1) \\
$
Solving (II) part \[\dfrac{{7\sqrt 5 }}{{7 + \sqrt 5 }}\]
On rationalizing the term,
$ \dfrac{{7\sqrt 5 }}{{7 + \sqrt 5 }} \times \dfrac{{7 - \sqrt 5 }}{{7 - \sqrt 5 }} $
$
= \dfrac{{7\sqrt 5 (7 - \sqrt 5 )}}{{{{(7)}^2} - {{(\sqrt 5 )}^2}}} \\
= \dfrac{{49\sqrt 5 - 35}}{{49 - 5}} \\
= \dfrac{{49\sqrt 5 - 35}}{{44}} \\
$
On adding two results in $ \dfrac{{7 + \sqrt 5 }}{{7 - \sqrt 5 }} - \dfrac{{7\sqrt 5 }}{{7 + \sqrt 5 }} $ we get,
$ = \dfrac{{54 + 14\sqrt 5 - \left( {49\sqrt 5 - 35} \right)}}{{44}} $
$ = \dfrac{{89 - 35\sqrt 5 }}{{44}} $
Firstly solve L.H.S by taking L.C.M
\[\dfrac{{(7 + \sqrt 5 )(7 + \sqrt 5 ) - \sqrt 5 (7 - \sqrt 5 )}}{{(7 - \sqrt 5 )(7 + \sqrt 5 )}}\]
\[
Use{\text{ }}\left( {a + b} \right){\text{ }}\left( {a - b} \right) = {a^2} - {b^2},{(a + b)^2} = {a^2} + 2ab + {b^2} \\
(7 + \sqrt 5 )(7 - \sqrt 5 ) = {(7)^2} - {(\sqrt 5 )^2} \\
= 49 - 5 \\
= 44 \\
\]
$ \dfrac{{{{(7)}^2} + 2 \times 7 \times \sqrt 5 + {{(5)}^2} - (49\sqrt 5 - 35)}}{{49 - 5}} $
$
\dfrac{{49 + 14\sqrt 5 + 5 - 49\sqrt 5 - 35}}{{44}} \\
\dfrac{{89 - 35\sqrt 5 }}{{44}} \\
$
Now substitute the value of LHS which we have solved in equation (i)
$
\dfrac{{89 - 35\sqrt 5 }}{{44}} = a + \dfrac{7}{{11}}\sqrt 5 b \\
or \\
\dfrac{{89}}{{44}} - \dfrac{{35}}{{44}}\sqrt 5 = a + \dfrac{7}{{11}}\sqrt 5 b \\
$
On equating the coefficients of like terms, we get,
$
a = \dfrac{{89}}{{44}},\dfrac{{7b}}{{11}} = \dfrac{{ - 35}}{{44}} \\
a = \dfrac{{89}}{{44}},b = \dfrac{{ - 35 \times 11}}{{7 \times 44}} \\
a = \dfrac{{89}}{{44}},b = \dfrac{{ - 5}}{4} \\
$
Note: By taking LCM and using formula, we can easily find out the values. Special attention should be given to the signs while expansion of formula.
Complete step by step solution:
Mark the equation and solve the equations separately by marking it as (I) and (II),
\[\mathop {\dfrac{{7 + \sqrt 5 }}{{7 - \sqrt 5 }}}\limits_{(I)} - \mathop {\dfrac{{7\sqrt 5 }}{{7 + \sqrt 5 }}}\limits_{(II)} = a + \dfrac{{7\sqrt 5 }}{{11}}b\]
(I) \[\dfrac{{7 + \sqrt 5 }}{{7 - \sqrt 5 }}\]
On rationalizing the term,
We get,
\[\dfrac{{7 + \sqrt 5 }}{{7 - \sqrt 5 }} \times \dfrac{{7 + \sqrt 5 }}{{7 + \sqrt 5 }},\,\,we\,get\]
$ = \dfrac{{(7 + \sqrt 5 )(7 + \sqrt 5 )}}{{(7 - \sqrt 5 )(7 + \sqrt 5 )}} $
Use the formula \[\left( {a + b} \right){\text{ }}\left( {a - b} \right) = {a^2} - {b^2}\]
\[
(7 + \sqrt 5 )(7 - \sqrt 5 ) \\
= {(7)^2} - {(\sqrt 5 )^2} \\
= 49 - 5 \\
= 44 \\
\]
And use formula \[{(a + b)^2} = {a^2} + 2ab + {b^2}\]
\[
{\left( {7 + \sqrt 5 } \right)^2} = {(7)^2} + 2\sqrt 5 + {(\sqrt 5 )^2} \\
= 49 + 14\sqrt 5 + 5 \\
\]
After solving the two expressions we get,
$
\dfrac{{49 + 14\sqrt 5 + 5}}{{44}} \\
= \dfrac{{54 + 14\sqrt 5 }}{{44}}....(1) \\
$
Solving (II) part \[\dfrac{{7\sqrt 5 }}{{7 + \sqrt 5 }}\]
On rationalizing the term,
$ \dfrac{{7\sqrt 5 }}{{7 + \sqrt 5 }} \times \dfrac{{7 - \sqrt 5 }}{{7 - \sqrt 5 }} $
$
= \dfrac{{7\sqrt 5 (7 - \sqrt 5 )}}{{{{(7)}^2} - {{(\sqrt 5 )}^2}}} \\
= \dfrac{{49\sqrt 5 - 35}}{{49 - 5}} \\
= \dfrac{{49\sqrt 5 - 35}}{{44}} \\
$
On adding two results in $ \dfrac{{7 + \sqrt 5 }}{{7 - \sqrt 5 }} - \dfrac{{7\sqrt 5 }}{{7 + \sqrt 5 }} $ we get,
$ = \dfrac{{54 + 14\sqrt 5 - \left( {49\sqrt 5 - 35} \right)}}{{44}} $
$ = \dfrac{{89 - 35\sqrt 5 }}{{44}} $
Firstly solve L.H.S by taking L.C.M
\[\dfrac{{(7 + \sqrt 5 )(7 + \sqrt 5 ) - \sqrt 5 (7 - \sqrt 5 )}}{{(7 - \sqrt 5 )(7 + \sqrt 5 )}}\]
\[
Use{\text{ }}\left( {a + b} \right){\text{ }}\left( {a - b} \right) = {a^2} - {b^2},{(a + b)^2} = {a^2} + 2ab + {b^2} \\
(7 + \sqrt 5 )(7 - \sqrt 5 ) = {(7)^2} - {(\sqrt 5 )^2} \\
= 49 - 5 \\
= 44 \\
\]
$ \dfrac{{{{(7)}^2} + 2 \times 7 \times \sqrt 5 + {{(5)}^2} - (49\sqrt 5 - 35)}}{{49 - 5}} $
$
\dfrac{{49 + 14\sqrt 5 + 5 - 49\sqrt 5 - 35}}{{44}} \\
\dfrac{{89 - 35\sqrt 5 }}{{44}} \\
$
Now substitute the value of LHS which we have solved in equation (i)
$
\dfrac{{89 - 35\sqrt 5 }}{{44}} = a + \dfrac{7}{{11}}\sqrt 5 b \\
or \\
\dfrac{{89}}{{44}} - \dfrac{{35}}{{44}}\sqrt 5 = a + \dfrac{7}{{11}}\sqrt 5 b \\
$
On equating the coefficients of like terms, we get,
$
a = \dfrac{{89}}{{44}},\dfrac{{7b}}{{11}} = \dfrac{{ - 35}}{{44}} \\
a = \dfrac{{89}}{{44}},b = \dfrac{{ - 35 \times 11}}{{7 \times 44}} \\
a = \dfrac{{89}}{{44}},b = \dfrac{{ - 5}}{4} \\
$
Note: By taking LCM and using formula, we can easily find out the values. Special attention should be given to the signs while expansion of formula.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

Which women's tennis player has 24 Grand Slam singles titles?

Who is the Brand Ambassador of Incredible India?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

A moving boat is observed from the top of a 150 m high class 10 maths CBSE

