Find the total surface area of the sphere whose volume is equal to the volume of the cone having the radius 12 cm and height 8 cm.
Answer
Verified
506.7k+ views
Hint: Find the volume of the cone and then find the radius of the sphere from the volume of cone as they are equal. Substitute the value of radius in the equation of surface area of sphere. Simplify it and find the surface area of the sphere.
Complete step-by-step answer:
We have been given the dimensions of a cone. The radius of the base of the cone is 12 cm and the radius can be represented as ‘r’.
The height of the cone can be marked as ‘h’ which is 6 cm.
We know the volume of a cone is \[{{{}^{1}/{}_{3}}^{rd}}\]of the volume of the cylinder.
Volume of cone =\[\dfrac{1}{3}\pi {{r}^{2}}h\].
It is said that the volume of the cone is equal to the volume of the sphere.
The volume of the sphere is given as\[\dfrac{4}{3}\pi {{r}^{2}}\].
Volume of sphere = Volume of cone……….. (1)
Substitute the volume of sphere and volume of cone and find the radius of the sphere, which can be taken as ‘r’.
\[\dfrac{4}{3}\pi {{r}^{3}}=\dfrac{1}{3}\pi {{r}^{2}}h\].
Substitute the value of radius r = 12 cm and height h = 6 cm in the equation.
\[\dfrac{4}{3}\pi {{r}^{3}}=\dfrac{1}{3}\pi \times {{12}^{2}}\times 6\]. [Cancel out \[\pi \]on LHS and RHS]
\[{{r}^{3}}=\dfrac{3}{4}\times \dfrac{1}{3}\times 12\times 6\times 12\].
\[{{\pi }^{3}}=\dfrac{12\times 12\times 6}{4}=\dfrac{864}{4}=216\].
Take cube root on both LHS and RHS.
\[{{r}^{3}}=216\].
\[r=\sqrt[3]{216}=\sqrt[3]{6\times 6\times 6}=6cm\].
Therefore, radius of the sphere, r = 6 cm.
Now what we need to find is the surface area of the sphere.
The surface area of a sphere is given by\[4\pi {{r}^{2}}\], where r = 6 cm.
Surface area of sphere =\[4\pi {{r}^{2}}\].
=\[4\times \dfrac{22}{7}\times 6\times 6\] [\[\pi \]can be taken as\[{}^{22}/{}_{7}\]]
= 452.57 sq. cm.
= 452.57\[c{{m}^{2}}\].
The surface area of sphere = 452.57\[c{{m}^{2}}\].
Note: A sphere is perfectly symmetrical. All the points on the surface are the same distance ‘r’ from the center. The main difference between a sphere and circle is that spheres represent 3 dimensionally, which circles are mentioned in 2 dimensions. But radius is taken the same way.
Complete step-by-step answer:
We have been given the dimensions of a cone. The radius of the base of the cone is 12 cm and the radius can be represented as ‘r’.
The height of the cone can be marked as ‘h’ which is 6 cm.
We know the volume of a cone is \[{{{}^{1}/{}_{3}}^{rd}}\]of the volume of the cylinder.
Volume of cone =\[\dfrac{1}{3}\pi {{r}^{2}}h\].
It is said that the volume of the cone is equal to the volume of the sphere.
The volume of the sphere is given as\[\dfrac{4}{3}\pi {{r}^{2}}\].
Volume of sphere = Volume of cone……….. (1)
Substitute the volume of sphere and volume of cone and find the radius of the sphere, which can be taken as ‘r’.
\[\dfrac{4}{3}\pi {{r}^{3}}=\dfrac{1}{3}\pi {{r}^{2}}h\].
Substitute the value of radius r = 12 cm and height h = 6 cm in the equation.
\[\dfrac{4}{3}\pi {{r}^{3}}=\dfrac{1}{3}\pi \times {{12}^{2}}\times 6\]. [Cancel out \[\pi \]on LHS and RHS]
\[{{r}^{3}}=\dfrac{3}{4}\times \dfrac{1}{3}\times 12\times 6\times 12\].
\[{{\pi }^{3}}=\dfrac{12\times 12\times 6}{4}=\dfrac{864}{4}=216\].
Take cube root on both LHS and RHS.
\[{{r}^{3}}=216\].
\[r=\sqrt[3]{216}=\sqrt[3]{6\times 6\times 6}=6cm\].
Therefore, radius of the sphere, r = 6 cm.
Now what we need to find is the surface area of the sphere.
The surface area of a sphere is given by\[4\pi {{r}^{2}}\], where r = 6 cm.
Surface area of sphere =\[4\pi {{r}^{2}}\].
=\[4\times \dfrac{22}{7}\times 6\times 6\] [\[\pi \]can be taken as\[{}^{22}/{}_{7}\]]
= 452.57 sq. cm.
= 452.57\[c{{m}^{2}}\].
The surface area of sphere = 452.57\[c{{m}^{2}}\].
Note: A sphere is perfectly symmetrical. All the points on the surface are the same distance ‘r’ from the center. The main difference between a sphere and circle is that spheres represent 3 dimensionally, which circles are mentioned in 2 dimensions. But radius is taken the same way.
Recently Updated Pages
What percentage of the area in India is covered by class 10 social science CBSE
The area of a 6m wide road outside a garden in all class 10 maths CBSE
What is the electric flux through a cube of side 1 class 10 physics CBSE
If one root of x2 x k 0 maybe the square of the other class 10 maths CBSE
The radius and height of a cylinder are in the ratio class 10 maths CBSE
An almirah is sold for 5400 Rs after allowing a discount class 10 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE
Write an application to the principal requesting five class 10 english CBSE