
Find the sum of the first 22 terms of the AP 1,4,7,10,…. ?
Answer
603k+ views
Hint- Here, we will be using the formula for the sum of first n terms of an arithmetic progression (AP) which is ${{\text{S}}_n} = \dfrac{n}{2}\left[ {2{a_1} + \left( {n - 1} \right)d} \right]$ and in order to get the sum of the first 22 terms of the given AP, we will evaluate ${{\text{S}}_{22}}$ by substituting n=22.
Complete step-by-step answer:
The given AP series is 1,4,7,10,….
Clearly, the first term of the given series is ${a_1} = 1$
Here, common difference is $
d = 4 - 1 \\
\Rightarrow d = 3 \\
$
As we know that the sum of first n terms of an AP series having first term as ${a_1}$ and common difference as d is given by
${{\text{S}}_n} = \dfrac{n}{2}\left[ {2{a_1} + \left( {n - 1} \right)d} \right]$
Now for the sum of the first 22 terms of the given AP series, we will put n=22, ${a_1} = 1$ and d=3 in the above formula.
$
{{\text{S}}_{22}} = \dfrac{{22}}{2}\left[ {2\left( 1 \right) + 3\left( {22 - 1} \right)} \right] \\
\Rightarrow {{\text{S}}_{22}} = 11\left[ {2 + 63} \right] \\
\Rightarrow {{\text{S}}_{22}} = 715 \\
$
Therefore, the sum of the first 22 terms of the given AP series is 715.
Note- An arithmetic progression (AP) is the series which will have the same common difference between any two consecutive terms like in the given series the common difference is constant between any two consecutive terms i.e., 3. For any general AP, the formula for ${n^{th}}$ term of this AP is given by ${a_n} = {a_1} + \left( {n - 1} \right)d$.
Complete step-by-step answer:
The given AP series is 1,4,7,10,….
Clearly, the first term of the given series is ${a_1} = 1$
Here, common difference is $
d = 4 - 1 \\
\Rightarrow d = 3 \\
$
As we know that the sum of first n terms of an AP series having first term as ${a_1}$ and common difference as d is given by
${{\text{S}}_n} = \dfrac{n}{2}\left[ {2{a_1} + \left( {n - 1} \right)d} \right]$
Now for the sum of the first 22 terms of the given AP series, we will put n=22, ${a_1} = 1$ and d=3 in the above formula.
$
{{\text{S}}_{22}} = \dfrac{{22}}{2}\left[ {2\left( 1 \right) + 3\left( {22 - 1} \right)} \right] \\
\Rightarrow {{\text{S}}_{22}} = 11\left[ {2 + 63} \right] \\
\Rightarrow {{\text{S}}_{22}} = 715 \\
$
Therefore, the sum of the first 22 terms of the given AP series is 715.
Note- An arithmetic progression (AP) is the series which will have the same common difference between any two consecutive terms like in the given series the common difference is constant between any two consecutive terms i.e., 3. For any general AP, the formula for ${n^{th}}$ term of this AP is given by ${a_n} = {a_1} + \left( {n - 1} \right)d$.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
Who was the first woman to receive Bharat Ratna?

Write a letter to the principal requesting him to grant class 10 english CBSE

Why is there a time difference of about 5 hours between class 10 social science CBSE

What is the median of the first 10 natural numbers class 10 maths CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

Discuss the main reasons for poverty in India

