Answer
Verified
485.4k+ views
Hint: First try to analyse the given scenario and then form an AP series, this will make the simplification easy.
According to the question, the numbers will be $3,6,9,12........,99$ .The first three terms are $3,6{\text{ and 9}}$ . Let’s compute ${2^{nd}} - {1^{st}}{\text{ term}}$ and ${3^{rd}} - {2^{nd}}{\text{ term}}$ . This will give us $6 - 3 = 3$ and $9 - 6 = 3$ .Since these differences are equal so we’ll say the given series is an AP. First term (a) is 3, last term $(l)$ is 99 and the common difference, which is the difference between two consecutive terms, is 3.
Now, we want to know which number term is 99. We’ll use ${n^{th}}$ term $({T_n})$ formula, which is $a + (n - 1)d$ . Where, a is the first term of the series, n is the number of terms and d is a common difference.
$\
{T_n} = a + (n - 1)d \\
\Rightarrow 99 = 3 + (n - 1)3 \\
\Rightarrow 99 - 3 = (n - 1)3 \\
\Rightarrow 96 = (n - 1)3 \\
\Rightarrow \dfrac{{96}}{3} = n - 1 \\
\Rightarrow 32 = n - 1 \\
\Rightarrow 32 + 1 = n \\
\Rightarrow n = 33 \\
\ $
So, ${T_{33}}$ is $99$ . Now, we’ll use the sum formula of AP which is ${S_n} = \dfrac{n}{2}(a + l)$ .On putting the values in this formula,
$\
{S_{33}} = \dfrac{{33}}{2}(3 + 99) \\
\Rightarrow {S_{33}} = \dfrac{{33}}{2}(102) \\
\Rightarrow {S_{33}} = 33 \times 51 \\
\Rightarrow {S_{33}} = 1683 \\
\ $
Hence the required sum is 1683.
Note: The hack in this question is to recognise the series. Once you are done with it, just applying the formula will give us the answer.
According to the question, the numbers will be $3,6,9,12........,99$ .The first three terms are $3,6{\text{ and 9}}$ . Let’s compute ${2^{nd}} - {1^{st}}{\text{ term}}$ and ${3^{rd}} - {2^{nd}}{\text{ term}}$ . This will give us $6 - 3 = 3$ and $9 - 6 = 3$ .Since these differences are equal so we’ll say the given series is an AP. First term (a) is 3, last term $(l)$ is 99 and the common difference, which is the difference between two consecutive terms, is 3.
Now, we want to know which number term is 99. We’ll use ${n^{th}}$ term $({T_n})$ formula, which is $a + (n - 1)d$ . Where, a is the first term of the series, n is the number of terms and d is a common difference.
$\
{T_n} = a + (n - 1)d \\
\Rightarrow 99 = 3 + (n - 1)3 \\
\Rightarrow 99 - 3 = (n - 1)3 \\
\Rightarrow 96 = (n - 1)3 \\
\Rightarrow \dfrac{{96}}{3} = n - 1 \\
\Rightarrow 32 = n - 1 \\
\Rightarrow 32 + 1 = n \\
\Rightarrow n = 33 \\
\ $
So, ${T_{33}}$ is $99$ . Now, we’ll use the sum formula of AP which is ${S_n} = \dfrac{n}{2}(a + l)$ .On putting the values in this formula,
$\
{S_{33}} = \dfrac{{33}}{2}(3 + 99) \\
\Rightarrow {S_{33}} = \dfrac{{33}}{2}(102) \\
\Rightarrow {S_{33}} = 33 \times 51 \\
\Rightarrow {S_{33}} = 1683 \\
\ $
Hence the required sum is 1683.
Note: The hack in this question is to recognise the series. Once you are done with it, just applying the formula will give us the answer.
Recently Updated Pages
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Which one of the following places is not covered by class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Difference Between Plant Cell and Animal Cell