
Find the sum of n terms of the series whose ${n^{th}}$ term is $4n\left( {{n^2} + 1} \right) - \left( {6n{}^2 + 1} \right)$.
Answer
604.2k+ views
Hint: Simply the expression & apply summation to get sum of n terms of series using standard formulas.
As, given in the question that ${n^{th}}$ term of the series is given by,
\[ \Rightarrow \]${n^{th}}$ term is \[ = {\text{ }}4n\left( {{n^2} + 1} \right) - \left( {6{n^2} + 1} \right) = 4{n^3} - 6{n^2} + 4n - 1\]
Now, we had to find the summation of n terms of the series whose ${n^{th}}$ term is given by
\[ \Rightarrow 4{n^3} - 6{n^2} + 4n - 1\]
So, applying summation to get sum of n terms of the series,
\[ \Rightarrow \]Sum of n terms of the series \[ = {\text{ }}4\Sigma {n^3} - 6\Sigma {n^2} + 4\Sigma n - \Sigma 1{\text{ }}\] (1)
Now, we had to break the above equation to find the sum of series.
And as we know that,
\[ \Rightarrow \]If ${n^{th}}$ term is \[{n^3}\], then sum of n terms will be \[{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2}\] (statement 1)
\[ \Rightarrow \]If ${n^{th}}$ term is \[{n^2}\], then sum of n terms will be \[\left( {\dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}} \right)\] (statement 2)
\[ \Rightarrow \]If ${n^{th}}$ term is $n$, then sum of n terms will be \[\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)\] (statement 3)
\[ \Rightarrow \]If all the terms are 1 then the sum of n terms of the series will be $n$. (statement 4)
So, putting values of statement 1, 2, 3 and 4 in equation 1, we get
\[ \Rightarrow \]Sum of n terms of the series \[ = 4{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2} - 6\left( {\dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}} \right) + 4\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right) - n\]
Solving above equation, we get
\[ \Rightarrow \]Sum of n terms of the series \[ = {n^4} + 2{n^3} + {n^2} - 2{n^3} - 3{n^2} - n + 2{n^2} + 2n - n = {n^4}\]
Hence, the sum of n terms of the given series will be \[{n^4}\].
Note:- Whenever we come up with this type of question then to find the solution of the problem efficiently, we must first, expand the given series and then apply the summation to the series. Then put values of \[\sum {{n^3}} \], \[\sum {{n^2}} \], \[\sum n \] and \[\sum 1 \] accordingly.
As, given in the question that ${n^{th}}$ term of the series is given by,
\[ \Rightarrow \]${n^{th}}$ term is \[ = {\text{ }}4n\left( {{n^2} + 1} \right) - \left( {6{n^2} + 1} \right) = 4{n^3} - 6{n^2} + 4n - 1\]
Now, we had to find the summation of n terms of the series whose ${n^{th}}$ term is given by
\[ \Rightarrow 4{n^3} - 6{n^2} + 4n - 1\]
So, applying summation to get sum of n terms of the series,
\[ \Rightarrow \]Sum of n terms of the series \[ = {\text{ }}4\Sigma {n^3} - 6\Sigma {n^2} + 4\Sigma n - \Sigma 1{\text{ }}\] (1)
Now, we had to break the above equation to find the sum of series.
And as we know that,
\[ \Rightarrow \]If ${n^{th}}$ term is \[{n^3}\], then sum of n terms will be \[{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2}\] (statement 1)
\[ \Rightarrow \]If ${n^{th}}$ term is \[{n^2}\], then sum of n terms will be \[\left( {\dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}} \right)\] (statement 2)
\[ \Rightarrow \]If ${n^{th}}$ term is $n$, then sum of n terms will be \[\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)\] (statement 3)
\[ \Rightarrow \]If all the terms are 1 then the sum of n terms of the series will be $n$. (statement 4)
So, putting values of statement 1, 2, 3 and 4 in equation 1, we get
\[ \Rightarrow \]Sum of n terms of the series \[ = 4{\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right)^2} - 6\left( {\dfrac{{n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6}} \right) + 4\left( {\dfrac{{n\left( {n + 1} \right)}}{2}} \right) - n\]
Solving above equation, we get
\[ \Rightarrow \]Sum of n terms of the series \[ = {n^4} + 2{n^3} + {n^2} - 2{n^3} - 3{n^2} - n + 2{n^2} + 2n - n = {n^4}\]
Hence, the sum of n terms of the given series will be \[{n^4}\].
Note:- Whenever we come up with this type of question then to find the solution of the problem efficiently, we must first, expand the given series and then apply the summation to the series. Then put values of \[\sum {{n^3}} \], \[\sum {{n^2}} \], \[\sum n \] and \[\sum 1 \] accordingly.
Recently Updated Pages
In golf, what is a "drive"?

In Formula 1, which city hosts the dramatic street race in Azerbaijan?

How many events are there in Olympic badminton?

In tennis, which ranking system is used for women?

In basketball, what is a "rebound"?

How many players are on a football team on the pitch?

Trending doubts
Why is there a time difference of about 5 hours between class 10 social science CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

How many members did the Constituent Assembly of India class 10 social science CBSE

Write an application to the principal requesting five class 10 english CBSE

The Constitution of India was adopted on A 26 November class 10 social science CBSE

