
Find the square root of
$5 - \sqrt {10} - \sqrt {15} + \sqrt 6 $
Answer
609.9k+ views
Hint: - Let the square root of the given equation be\[\left( {{\text{1 + }}\sqrt a - \sqrt b } \right)\], and also use the property which is \[{\left( {a + b - c} \right)^2} = {a^2} + {b^2} + {c^2} + 2ab - 2bc - 2ca\]
Given equation
$5 - \sqrt {10} - \sqrt {15} + \sqrt 6 $
Square root of given equation is
\[\sqrt {5 - \sqrt {10} - \sqrt {15} + \sqrt 6 } \]
There are four terms in the given equation therefore in the square root of this it has three terms.
So, let \[{\text{1 + }}\sqrt a - \sqrt b = \sqrt {5 - \sqrt {10} - \sqrt {15} + \sqrt 6 } ................\left( 1 \right)\]
Squaring both sides
\[{\left( {{\text{1 + }}\sqrt a - \sqrt b } \right)^2} = {\left( {\sqrt {5 - \sqrt {10} - \sqrt {15} + \sqrt 6 } } \right)^2}\]
Now, as we know that \[{\left( {a + b - c} \right)^2} = {a^2} + {b^2} + {c^2} + 2ab - 2bc - 2ca\]
\[
\Rightarrow 1 + a + b + 2\sqrt a - 2\sqrt {ab} - 2\sqrt b = 5 - \sqrt {10} - \sqrt {15} + \sqrt 6 \\
\Rightarrow 1 + a + b + 2\sqrt a - 2\sqrt {ab} - 2\sqrt b = 5 + \sqrt 6 - \sqrt {15} - \sqrt {10} \\
\]
So, on comparing
\[
1 + a + b = 5{\text{, }}\sqrt a = \dfrac{{\sqrt 6 }}{2},{\text{ }}\sqrt {ab} {\text{ = }}\dfrac{{\sqrt {15} }}{2}{\text{, and }}\sqrt b = \dfrac{{\sqrt {10} }}{2} \\
\sqrt a = \dfrac{{\sqrt 6 }}{2} \Rightarrow a = \dfrac{6}{4} = \dfrac{3}{2} \\
\sqrt b = \dfrac{{\sqrt {10} }}{2} \Rightarrow b = \dfrac{{10}}{4} = \dfrac{5}{2} \\
\]
From equation (1)
\[
{\text{1 + }}\sqrt a - \sqrt b = \sqrt {5 - \sqrt {10} - \sqrt {15} + \sqrt 6 } \\
\Rightarrow \sqrt {5 - \sqrt {10} - \sqrt {15} + \sqrt 6 } = 1 + \sqrt {\dfrac{3}{2}} - \sqrt {\dfrac{5}{2}} \\
\]
As we know perfect square root always gives us \[ \pm \]condition
\[ \Rightarrow \sqrt {5 - \sqrt {10} - \sqrt {15} + \sqrt 6 } = \pm \left( {1 + \sqrt {\dfrac{3}{2}} - \sqrt {\dfrac{5}{2}} } \right)\]
So, this is the required square root.
Note: -In such types of questions always assume the required square root as above then take square on both sides and compare its terms and calculate the values of $a$ and $b$ then from the equation which we assumed substitute the values of $a$ and $b$ we will get the required square root.
Given equation
$5 - \sqrt {10} - \sqrt {15} + \sqrt 6 $
Square root of given equation is
\[\sqrt {5 - \sqrt {10} - \sqrt {15} + \sqrt 6 } \]
There are four terms in the given equation therefore in the square root of this it has three terms.
So, let \[{\text{1 + }}\sqrt a - \sqrt b = \sqrt {5 - \sqrt {10} - \sqrt {15} + \sqrt 6 } ................\left( 1 \right)\]
Squaring both sides
\[{\left( {{\text{1 + }}\sqrt a - \sqrt b } \right)^2} = {\left( {\sqrt {5 - \sqrt {10} - \sqrt {15} + \sqrt 6 } } \right)^2}\]
Now, as we know that \[{\left( {a + b - c} \right)^2} = {a^2} + {b^2} + {c^2} + 2ab - 2bc - 2ca\]
\[
\Rightarrow 1 + a + b + 2\sqrt a - 2\sqrt {ab} - 2\sqrt b = 5 - \sqrt {10} - \sqrt {15} + \sqrt 6 \\
\Rightarrow 1 + a + b + 2\sqrt a - 2\sqrt {ab} - 2\sqrt b = 5 + \sqrt 6 - \sqrt {15} - \sqrt {10} \\
\]
So, on comparing
\[
1 + a + b = 5{\text{, }}\sqrt a = \dfrac{{\sqrt 6 }}{2},{\text{ }}\sqrt {ab} {\text{ = }}\dfrac{{\sqrt {15} }}{2}{\text{, and }}\sqrt b = \dfrac{{\sqrt {10} }}{2} \\
\sqrt a = \dfrac{{\sqrt 6 }}{2} \Rightarrow a = \dfrac{6}{4} = \dfrac{3}{2} \\
\sqrt b = \dfrac{{\sqrt {10} }}{2} \Rightarrow b = \dfrac{{10}}{4} = \dfrac{5}{2} \\
\]
From equation (1)
\[
{\text{1 + }}\sqrt a - \sqrt b = \sqrt {5 - \sqrt {10} - \sqrt {15} + \sqrt 6 } \\
\Rightarrow \sqrt {5 - \sqrt {10} - \sqrt {15} + \sqrt 6 } = 1 + \sqrt {\dfrac{3}{2}} - \sqrt {\dfrac{5}{2}} \\
\]
As we know perfect square root always gives us \[ \pm \]condition
\[ \Rightarrow \sqrt {5 - \sqrt {10} - \sqrt {15} + \sqrt 6 } = \pm \left( {1 + \sqrt {\dfrac{3}{2}} - \sqrt {\dfrac{5}{2}} } \right)\]
So, this is the required square root.
Note: -In such types of questions always assume the required square root as above then take square on both sides and compare its terms and calculate the values of $a$ and $b$ then from the equation which we assumed substitute the values of $a$ and $b$ we will get the required square root.
Recently Updated Pages
Master Class 9 Social Science: Engaging Questions & Answers for Success

Master Class 9 Science: Engaging Questions & Answers for Success

Master Class 9 English: Engaging Questions & Answers for Success

Master Class 9 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Trending doubts
Which places in India experience sunrise first and class 9 social science CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Write the 6 fundamental rights of India and explain in detail

Difference Between Plant Cell and Animal Cell

What is the Full Form of ISI and RAW

Golden Revolution is related to AFood production BOil class 9 social science CBSE

