
Find the square root of: $12\sqrt 5 + 2\sqrt {55} $
A. $\left( {\sqrt {11} + 1} \right)\sqrt[4]{5}$
B. $\sqrt[4]{5}\left( {1 + \sqrt 5 } \right)$
C. $\sqrt[4]{5}\left( {\sqrt {11} + \sqrt 5 } \right)$
D. $\sqrt 5 \left( {\sqrt {11} + 1} \right)$
Answer
505.8k+ views
Hint: In this question, we will use factorization, and expansion of algebraic identities. For this problem, we will use the algebraic identity ${(a + b)^2} = {a^2} + 2ab + {b^2}$ .
Complete step by step solution:
Now, in this question, we have to find the square root of $12\sqrt 5 + 2\sqrt {55} $.
So it will become: $\sqrt {12\sqrt 5 + 2\sqrt {55} } $, which on simplification will become:
$
\sqrt {12\sqrt 5 + 2\sqrt {55} } \\
= \sqrt {12\sqrt 5 + 2\sqrt {5 \times 11} } \\
= \sqrt {12\sqrt 5 + 2\sqrt 5 .\sqrt {11} } \\
$
Now, to solve $\sqrt {12\sqrt 5 + 2\sqrt {55} } $, we will take $\sqrt 5 $ common within the under root and get:
$
= \sqrt {12\sqrt 5 + 2\sqrt 5 .\sqrt {11} } \\
= \sqrt {\sqrt 5 (12 + 2\sqrt {11} )} \\
$
Now we will change the term $(12 + 2\sqrt {11} )$ inside the under root sign to express it in terms of ${(a + b)^2}$ .
Now we can write $(12 + 2\sqrt {11} )$ as:
$(1 + 11 + 2\sqrt {11} )$ which can we reframed as:
$({1^2} + {(\sqrt {11} )^2} + 2\sqrt {11} )$, comparing it with the RHS of the expansion of the algebraic identity ${(a + b)^2}$ which is given as:
${a^2} + 2ab + {b^2}$
We will get $({1^2} + {(\sqrt {11} )^2} + 2\sqrt {11} )$= ${a^2} + 2ab + {b^2}$
So that,
$
{a^2} = {1^2}, \\
2ab = 2.1.\sqrt {11} \\
{b^2} = {(\sqrt {11} )^2} \\
$
Such that we get :
$
a = 1, \\
2ab = 2.1.\sqrt {11} \\
b = \sqrt {11} \\
$
Now, since
${a^2} + 2ab + {b^2} = {(a + b)^2}$
Then putting the values obtained above:
$({1^2} + {(\sqrt {11} )^2} + 2\sqrt {11} ) = {(1 + \sqrt {11} )^2}$
Therefore $\sqrt {12\sqrt 5 + 2\sqrt {55} } $ will now become:
$
= \sqrt {12\sqrt 5 + 2\sqrt 5 .\sqrt {11} } \\
= \sqrt {\sqrt 5 (12 + 2\sqrt {11} )} \\
= \sqrt {\sqrt 5 ({1^2} + {{(\sqrt {11} )}^2} + 2\sqrt {11} )} \\
= \sqrt {\sqrt 5 {{(1 + \sqrt {11} )}^2}} \\
= \sqrt {\sqrt 5 } (1 + \sqrt {11} ) \\
= \sqrt[4]{5}(1 + \sqrt {11} ) \\
$
So, finally we can say that :
Square root of $12\sqrt 5 + 2\sqrt {55} $
$ = \sqrt[4]{5}(\sqrt {11} + 1)$
Hence, the correct answer is option A.
Note: We cannot afford to forget the square root operation throughout the solution of this problem. For such problems, which require us to find the square root of another square root, we need to identify the algebraic expansion accurately so that we can get the correct corresponding algebraic identity to simplify and evaluate the square root.
Complete step by step solution:
Now, in this question, we have to find the square root of $12\sqrt 5 + 2\sqrt {55} $.
So it will become: $\sqrt {12\sqrt 5 + 2\sqrt {55} } $, which on simplification will become:
$
\sqrt {12\sqrt 5 + 2\sqrt {55} } \\
= \sqrt {12\sqrt 5 + 2\sqrt {5 \times 11} } \\
= \sqrt {12\sqrt 5 + 2\sqrt 5 .\sqrt {11} } \\
$
Now, to solve $\sqrt {12\sqrt 5 + 2\sqrt {55} } $, we will take $\sqrt 5 $ common within the under root and get:
$
= \sqrt {12\sqrt 5 + 2\sqrt 5 .\sqrt {11} } \\
= \sqrt {\sqrt 5 (12 + 2\sqrt {11} )} \\
$
Now we will change the term $(12 + 2\sqrt {11} )$ inside the under root sign to express it in terms of ${(a + b)^2}$ .
Now we can write $(12 + 2\sqrt {11} )$ as:
$(1 + 11 + 2\sqrt {11} )$ which can we reframed as:
$({1^2} + {(\sqrt {11} )^2} + 2\sqrt {11} )$, comparing it with the RHS of the expansion of the algebraic identity ${(a + b)^2}$ which is given as:
${a^2} + 2ab + {b^2}$
We will get $({1^2} + {(\sqrt {11} )^2} + 2\sqrt {11} )$= ${a^2} + 2ab + {b^2}$
So that,
$
{a^2} = {1^2}, \\
2ab = 2.1.\sqrt {11} \\
{b^2} = {(\sqrt {11} )^2} \\
$
Such that we get :
$
a = 1, \\
2ab = 2.1.\sqrt {11} \\
b = \sqrt {11} \\
$
Now, since
${a^2} + 2ab + {b^2} = {(a + b)^2}$
Then putting the values obtained above:
$({1^2} + {(\sqrt {11} )^2} + 2\sqrt {11} ) = {(1 + \sqrt {11} )^2}$
Therefore $\sqrt {12\sqrt 5 + 2\sqrt {55} } $ will now become:
$
= \sqrt {12\sqrt 5 + 2\sqrt 5 .\sqrt {11} } \\
= \sqrt {\sqrt 5 (12 + 2\sqrt {11} )} \\
= \sqrt {\sqrt 5 ({1^2} + {{(\sqrt {11} )}^2} + 2\sqrt {11} )} \\
= \sqrt {\sqrt 5 {{(1 + \sqrt {11} )}^2}} \\
= \sqrt {\sqrt 5 } (1 + \sqrt {11} ) \\
= \sqrt[4]{5}(1 + \sqrt {11} ) \\
$
So, finally we can say that :
Square root of $12\sqrt 5 + 2\sqrt {55} $
$ = \sqrt[4]{5}(\sqrt {11} + 1)$
Hence, the correct answer is option A.
Note: We cannot afford to forget the square root operation throughout the solution of this problem. For such problems, which require us to find the square root of another square root, we need to identify the algebraic expansion accurately so that we can get the correct corresponding algebraic identity to simplify and evaluate the square root.
Recently Updated Pages
Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Earth rotates from West to east ATrue BFalse class 6 social science CBSE

The easternmost longitude of India is A 97circ 25E class 6 social science CBSE

Write the given sentence in the passive voice Ann cant class 6 CBSE

Convert 1 foot into meters A030 meter B03048 meter-class-6-maths-CBSE

What is the LCM of 30 and 40 class 6 maths CBSE

Trending doubts
The largest brackish water lake in India is A Wular class 9 biology CBSE

Define human made resources

What is the role of Mahatma Gandhi in national movement

Which Army is not a professional occupation A Indian class 9 social science CBSE

On an outline map of India show its neighbouring c class 9 social science CBSE

What subjects did Margie and Tommy learn class 9 english CBSE
