Answer
Verified
446.4k+ views
Hint: To do this question we need to first learn about the method of completing the squares. In this method we first make the coefficient of $ {{x}^{2}} $ as 1 then we will take the constant part of the quadratic equation to the RHS side of the equation then we add or subtract constant number on both sides of the equation to make a perfect square on the LHS of the equation. When a perfect square is made on the LHS of the equation we will equate the square with whatever constant we have on our RHS and we will get the desired value of the variable.
Complete step-by-step answer:
We need solve the problem step by step, so
We will apply the method of completing the squares to the given question, we are given that
$ 3{{x}^{2}}-2\sqrt{6}x+2=0 $
First we need to make the constant of $ {{x}^{2}} $ as 1, so divide both sides by it’s coefficient i.e. 3, we get
\[{{x}^{2}}-\dfrac{2\sqrt{6}x}{3}+\dfrac{2}{3}=0\]
Taking constant part i.e. $ \dfrac{2}{3} $ to RHS, we get
\[{{x}^{2}}-\dfrac{2\sqrt{6}x}{3}=-\dfrac{2}{3}\]
Now adding square of $ -\dfrac{\sqrt{6}}{3} $ on both sides we get,
\[{{x}^{2}}-\dfrac{2\sqrt{6}x}{3}+{{\left( -\dfrac{\sqrt{6}}{3} \right)}^{2}}=-\dfrac{2}{3}+{{\left( -\dfrac{\sqrt{6}}{3} \right)}^{2}}\]
After further solving the above expression we get,
$ {{\left( x-\dfrac{\sqrt{6}}{3} \right)}^{2}}=0 $
Hence, value of $ x $ will be,
$ x=\dfrac{\sqrt{6}}{3}=\sqrt{\dfrac{2}{3}} $
So, the correct answer is “Option D”.
Note: To solve by method of completing the squares you need to follow every step if you miss out any of the given steps you will not be able to solve the problems. Some students miss out even the first step i.e. to make the coefficient of the $ {{x}^{2}} $ as 1 and end up wasting a lot of time so try to go step by step only.
You can also do this question by checking each option and if the option satisfies the equation then it will be our required answer but do by this method only in objective type because it is mentioned in the question itself that we have to do it by method of completing squares so in subjective follow the given method.
Complete step-by-step answer:
We need solve the problem step by step, so
We will apply the method of completing the squares to the given question, we are given that
$ 3{{x}^{2}}-2\sqrt{6}x+2=0 $
First we need to make the constant of $ {{x}^{2}} $ as 1, so divide both sides by it’s coefficient i.e. 3, we get
\[{{x}^{2}}-\dfrac{2\sqrt{6}x}{3}+\dfrac{2}{3}=0\]
Taking constant part i.e. $ \dfrac{2}{3} $ to RHS, we get
\[{{x}^{2}}-\dfrac{2\sqrt{6}x}{3}=-\dfrac{2}{3}\]
Now adding square of $ -\dfrac{\sqrt{6}}{3} $ on both sides we get,
\[{{x}^{2}}-\dfrac{2\sqrt{6}x}{3}+{{\left( -\dfrac{\sqrt{6}}{3} \right)}^{2}}=-\dfrac{2}{3}+{{\left( -\dfrac{\sqrt{6}}{3} \right)}^{2}}\]
After further solving the above expression we get,
$ {{\left( x-\dfrac{\sqrt{6}}{3} \right)}^{2}}=0 $
Hence, value of $ x $ will be,
$ x=\dfrac{\sqrt{6}}{3}=\sqrt{\dfrac{2}{3}} $
So, the correct answer is “Option D”.
Note: To solve by method of completing the squares you need to follow every step if you miss out any of the given steps you will not be able to solve the problems. Some students miss out even the first step i.e. to make the coefficient of the $ {{x}^{2}} $ as 1 and end up wasting a lot of time so try to go step by step only.
You can also do this question by checking each option and if the option satisfies the equation then it will be our required answer but do by this method only in objective type because it is mentioned in the question itself that we have to do it by method of completing squares so in subjective follow the given method.
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Which are the Top 10 Largest Countries of the World?
One cusec is equal to how many liters class 8 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The mountain range which stretches from Gujarat in class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths