Answer
Verified
408k+ views
Hint: We will put this equation into its equivalent slope intercept form of equation and then we will try to find the value of the slope.
Formula used: The general equation of slope intercept form of any equation is \[y = mx + c\], where \[m\] is the slope of the equation and \[c\] is an arbitrary constant.
Slope of any equation states the nature of the equation.
Slope of an equation is defined by the ratio of rise and run made by the straight line.
Suppose coordinates joining the line are \[({x_1},{y_1})\;and\;({x_2},{y_2})\].
So, the raise made by the line would be \[({y_2} - {y_1})\] and the run made by the line would become \[({x_2} - {x_1})\].
In such cases slope of the equation will be \[ = \dfrac{{({y_2} - {y_1})}}{{({x_2} - {x_1})}}\].
Complete Step by Step Solution:
The given equation is as following:
\[ \Rightarrow - 3x + 8y = 24\].
So, we will take all the terms to the R.H.S except ‘\[8y\]’.
By doing the above operation, we get:
\[ \Rightarrow 8y = 24 + 3x\].
Now, divide both the sides of the equation by ‘\[8\]’, we get:
\[ \Rightarrow \dfrac{{8y}}{8} = \dfrac{{24 + 3x}}{8}\].
Now, by solving the above equation, we get:
\[ \Rightarrow y = \dfrac{3}{8}x + 3..............(1)\]
Now, if we compare the equation \[(1)\] with the slope intercept form of a linear equation, we can state the following statement:
The slope intercept form of the linear equation is: \[y = mx + c\], where \[m\]is the slope.
So, by comparing it, we get:
\[ \Rightarrow m = \dfrac{3}{8}\] and \[c = 3\].
Therefore, the slope of the equation is \[\dfrac{3}{8}\].
Note: Points to remember:
The general equation of slope intercept form of any equation is \[y = mx + c\], where \[m\] is the slope of the equation and \[c\] is an arbitrary constant.
For, \[y = mx + c\]:
If we have a negative slope, the line is decreasing or falling from left to right, and passing through the point \[(0,c)\].
On the other hand, if we have a positive slope, the line is increasing or rising from left to right, and passing through the point \[(0,c)\].
From the above answer, we can infer that the line has a rise of \[3\] units vertically and a run of \[8\] units horizontally.
And, also the line will pass through the point \[(0,3)\].
Formula used: The general equation of slope intercept form of any equation is \[y = mx + c\], where \[m\] is the slope of the equation and \[c\] is an arbitrary constant.
Slope of any equation states the nature of the equation.
Slope of an equation is defined by the ratio of rise and run made by the straight line.
Suppose coordinates joining the line are \[({x_1},{y_1})\;and\;({x_2},{y_2})\].
So, the raise made by the line would be \[({y_2} - {y_1})\] and the run made by the line would become \[({x_2} - {x_1})\].
In such cases slope of the equation will be \[ = \dfrac{{({y_2} - {y_1})}}{{({x_2} - {x_1})}}\].
Complete Step by Step Solution:
The given equation is as following:
\[ \Rightarrow - 3x + 8y = 24\].
So, we will take all the terms to the R.H.S except ‘\[8y\]’.
By doing the above operation, we get:
\[ \Rightarrow 8y = 24 + 3x\].
Now, divide both the sides of the equation by ‘\[8\]’, we get:
\[ \Rightarrow \dfrac{{8y}}{8} = \dfrac{{24 + 3x}}{8}\].
Now, by solving the above equation, we get:
\[ \Rightarrow y = \dfrac{3}{8}x + 3..............(1)\]
Now, if we compare the equation \[(1)\] with the slope intercept form of a linear equation, we can state the following statement:
The slope intercept form of the linear equation is: \[y = mx + c\], where \[m\]is the slope.
So, by comparing it, we get:
\[ \Rightarrow m = \dfrac{3}{8}\] and \[c = 3\].
Therefore, the slope of the equation is \[\dfrac{3}{8}\].
Note: Points to remember:
The general equation of slope intercept form of any equation is \[y = mx + c\], where \[m\] is the slope of the equation and \[c\] is an arbitrary constant.
For, \[y = mx + c\]:
If we have a negative slope, the line is decreasing or falling from left to right, and passing through the point \[(0,c)\].
On the other hand, if we have a positive slope, the line is increasing or rising from left to right, and passing through the point \[(0,c)\].
From the above answer, we can infer that the line has a rise of \[3\] units vertically and a run of \[8\] units horizontally.
And, also the line will pass through the point \[(0,3)\].
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Choose the antonym of the word given below Furious class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE