Answer
Verified
492.3k+ views
Hint: If we have a quadratic equation $a{x^2} + bx + c = 0$ and we need to solve by factorisation method then we’ll try to break b into two parts namely $\alpha {\text{ and }}\beta $ such that, $\alpha + \beta = b$ and $\alpha \beta = ac$. Use this information to solve.
1. ${x^2} - 3x - 10 = 0$. We’ll break 3 into -5 and 2 so that $ - 5 + 2 = 3$ and $ - 5 \times 2 = 10$.
On solving we get,
$
{x^2} - 3x - 10 = 0 \\
\Rightarrow {x^2} - 5x + 2x - 10 = 0 \\
\Rightarrow x(x - 5) + 2(x - 5) = 0 \\
\Rightarrow (x - 5)(x + 2) = 0 \\
\Rightarrow x = 5, - 2 \\
$
2. $2{x^2} + x - 6 = 0$. We’ll break 1 into 4 and -3 so that $4 - 3 = 1$and $4 \times ( - 3) = - 12$.
On solving we get,
$
2{x^2} + x - 6 = 0 \\
\Rightarrow 2{x^2} + 4x - 3x - 6 = 0 \\
\Rightarrow 2x(x + 2) - 3(x + 2) = 0 \\
\Rightarrow (x + 2)(2x - 3) = 0 \\
\Rightarrow x = \dfrac{3}{2}, - 2 \\
$
3. $\sqrt 2 {x^2} + 7x + 5\sqrt 2 = 0$. We’ll break 7 into 2 and 5 so that $2 + 5 = 7$ and $2 \times 5 = 10 = \sqrt 2 \times 5\sqrt 2 $. On solving we get,
$
\sqrt 2 {x^2} + 7x + 5\sqrt 2 = 0 \\
\Rightarrow \sqrt 2 {x^2} + 2x + 5x + 5\sqrt 2 = 0 \\
\Rightarrow \sqrt 2 x(x + \sqrt 2 ) + 5(x + \sqrt 2 ) = 0 \\
\Rightarrow (x + \sqrt 2 )(\sqrt 2 x + 5) = 0 \\
\Rightarrow x = - \sqrt 2 ,\dfrac{{ - 5}}{{\sqrt 2 }} \\
$
4. $2{x^2} - x + \dfrac{1}{8} = 0$. It can also be written as $16{x^2} - 8x + 1 = 0$. We’ll break -8 into -4 and -4 so that $( - 4) + ( - 4) = - 8$ and $( - 4) \times ( - 4) = 16$. On solving we get,
$
16{x^2} - 8x + 1 = 0 \\
\Rightarrow 16{x^2} - 4x - 4x + 1 = 0 \\
\Rightarrow 16x\left( {x - \dfrac{1}{4}} \right) - 4\left( {x - \dfrac{1}{4}} \right) = 0 \\
\Rightarrow \left( {x - \dfrac{1}{4}} \right)(16x - 4) = 0 \\
\Rightarrow x = \dfrac{1}{4},\dfrac{1}{4} \\
$
5. $100{x^2} - 20x + 1 = 0$. We’ll break -20 into -10 and -10 to that \[( - 10) + ( - 10) = - 20\]also $( - 10) \times ( - 10) = 100$. On solving we get,
$
100{x^2} - 20x + 1 = 0 \\
\Rightarrow 100{x^2} - 10x - 10x + 1 = 0 \\
\Rightarrow 10x(10x - 1) - 1(10x - 1) = 0 \\
\Rightarrow (10x - 1)(10x - 1) = 0 \\
\Rightarrow x = \dfrac{1}{{10}},\dfrac{1}{{10}} \\
$
Note: Factorisation is nothing but the process by which we can solve not only quadratic but cubic equations as well.
1. ${x^2} - 3x - 10 = 0$. We’ll break 3 into -5 and 2 so that $ - 5 + 2 = 3$ and $ - 5 \times 2 = 10$.
On solving we get,
$
{x^2} - 3x - 10 = 0 \\
\Rightarrow {x^2} - 5x + 2x - 10 = 0 \\
\Rightarrow x(x - 5) + 2(x - 5) = 0 \\
\Rightarrow (x - 5)(x + 2) = 0 \\
\Rightarrow x = 5, - 2 \\
$
2. $2{x^2} + x - 6 = 0$. We’ll break 1 into 4 and -3 so that $4 - 3 = 1$and $4 \times ( - 3) = - 12$.
On solving we get,
$
2{x^2} + x - 6 = 0 \\
\Rightarrow 2{x^2} + 4x - 3x - 6 = 0 \\
\Rightarrow 2x(x + 2) - 3(x + 2) = 0 \\
\Rightarrow (x + 2)(2x - 3) = 0 \\
\Rightarrow x = \dfrac{3}{2}, - 2 \\
$
3. $\sqrt 2 {x^2} + 7x + 5\sqrt 2 = 0$. We’ll break 7 into 2 and 5 so that $2 + 5 = 7$ and $2 \times 5 = 10 = \sqrt 2 \times 5\sqrt 2 $. On solving we get,
$
\sqrt 2 {x^2} + 7x + 5\sqrt 2 = 0 \\
\Rightarrow \sqrt 2 {x^2} + 2x + 5x + 5\sqrt 2 = 0 \\
\Rightarrow \sqrt 2 x(x + \sqrt 2 ) + 5(x + \sqrt 2 ) = 0 \\
\Rightarrow (x + \sqrt 2 )(\sqrt 2 x + 5) = 0 \\
\Rightarrow x = - \sqrt 2 ,\dfrac{{ - 5}}{{\sqrt 2 }} \\
$
4. $2{x^2} - x + \dfrac{1}{8} = 0$. It can also be written as $16{x^2} - 8x + 1 = 0$. We’ll break -8 into -4 and -4 so that $( - 4) + ( - 4) = - 8$ and $( - 4) \times ( - 4) = 16$. On solving we get,
$
16{x^2} - 8x + 1 = 0 \\
\Rightarrow 16{x^2} - 4x - 4x + 1 = 0 \\
\Rightarrow 16x\left( {x - \dfrac{1}{4}} \right) - 4\left( {x - \dfrac{1}{4}} \right) = 0 \\
\Rightarrow \left( {x - \dfrac{1}{4}} \right)(16x - 4) = 0 \\
\Rightarrow x = \dfrac{1}{4},\dfrac{1}{4} \\
$
5. $100{x^2} - 20x + 1 = 0$. We’ll break -20 into -10 and -10 to that \[( - 10) + ( - 10) = - 20\]also $( - 10) \times ( - 10) = 100$. On solving we get,
$
100{x^2} - 20x + 1 = 0 \\
\Rightarrow 100{x^2} - 10x - 10x + 1 = 0 \\
\Rightarrow 10x(10x - 1) - 1(10x - 1) = 0 \\
\Rightarrow (10x - 1)(10x - 1) = 0 \\
\Rightarrow x = \dfrac{1}{{10}},\dfrac{1}{{10}} \\
$
Note: Factorisation is nothing but the process by which we can solve not only quadratic but cubic equations as well.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
The male gender of Mare is Horse class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths