
Find the roots of the equation ${x^2} + 7x + 12 = 0$ by using the formula.
Answer
606k+ views
Hint- Here, we will proceed with the help of factorization as well as discriminant formula to solve for the two roots of the given quadratic equation. For discriminant method we will apply the general formula $x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}$ for any quadratic equation $a{x^2} + bx + c = 0$.
Complete step-by-step answer:
Given quadratic equation in variable x is ${x^2} + 7x + 12 = 0{\text{ }} \to {\text{(1)}}$
Here, we can solve this quadratic equation with the help of factorization method. The given quadratic equation can be written as
$ \Rightarrow {x^2} + 7x + 12 = 0 \Rightarrow {x^2} + 3x + 4x + 12 = 0 \Rightarrow x\left( {x + 3} \right) + 4\left( {x + 3} \right) = 0 \Rightarrow \left( {x + 3} \right)\left( {x + 4} \right) = 0$
Either $
\left( {x + 3} \right) = 0 \\
\Rightarrow x = - 3 \\
$ or $
\left( {x + 4} \right) = 0 \\
\Rightarrow x = - 4 \\
$
Hence, the two roots of the given quadratic equation are -3 and -4.
We can also solve the given quadratic equation by using the discriminant method.
For any general quadratic equation $a{x^2} + bx + c = 0{\text{ }} \to {\text{(2)}}$
According to discriminant method, the roots of this quadratic equation is given by
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}{\text{ }} \to {\text{(3)}}$
By comparing equations (1) and (2), we get
a=1, b=7 and c=12
Using the formula given by equation (3), the roots of the given quadratic equation are given by
\[x = \dfrac{{ - 7 \pm \sqrt {{{\left( 7 \right)}^2} - 4 \times 1 \times 12} }}{{2 \times 1}} = \dfrac{{ - 7 \pm \sqrt {49 - 48} }}{2} = \dfrac{{ - 7 \pm \sqrt 1 }}{2} = \dfrac{{ - 7 \pm 1}}{2}\]
Either \[x = \dfrac{{ - 7 + 1}}{2} = \dfrac{{ - 6}}{2} = - 3\] or \[x = \dfrac{{ - 7 - 1}}{2} = \dfrac{{ - 8}}{2} = - 4\]
So, the two roots of the given quadratic equation are -3 and -4.
Clearly, we are getting the same results from both factorization method and discriminant method.
Note- In these types of problems, we can use either factorization method or discriminant method to obtain the roots of the given quadratic equation. But discriminant method is usually adopted because it is an easier method as compared to factorization method for finding the roots of the given quadratic equation.
Complete step-by-step answer:
Given quadratic equation in variable x is ${x^2} + 7x + 12 = 0{\text{ }} \to {\text{(1)}}$
Here, we can solve this quadratic equation with the help of factorization method. The given quadratic equation can be written as
$ \Rightarrow {x^2} + 7x + 12 = 0 \Rightarrow {x^2} + 3x + 4x + 12 = 0 \Rightarrow x\left( {x + 3} \right) + 4\left( {x + 3} \right) = 0 \Rightarrow \left( {x + 3} \right)\left( {x + 4} \right) = 0$
Either $
\left( {x + 3} \right) = 0 \\
\Rightarrow x = - 3 \\
$ or $
\left( {x + 4} \right) = 0 \\
\Rightarrow x = - 4 \\
$
Hence, the two roots of the given quadratic equation are -3 and -4.
We can also solve the given quadratic equation by using the discriminant method.
For any general quadratic equation $a{x^2} + bx + c = 0{\text{ }} \to {\text{(2)}}$
According to discriminant method, the roots of this quadratic equation is given by
$x = \dfrac{{ - b \pm \sqrt {{b^2} - 4ac} }}{{2a}}{\text{ }} \to {\text{(3)}}$
By comparing equations (1) and (2), we get
a=1, b=7 and c=12
Using the formula given by equation (3), the roots of the given quadratic equation are given by
\[x = \dfrac{{ - 7 \pm \sqrt {{{\left( 7 \right)}^2} - 4 \times 1 \times 12} }}{{2 \times 1}} = \dfrac{{ - 7 \pm \sqrt {49 - 48} }}{2} = \dfrac{{ - 7 \pm \sqrt 1 }}{2} = \dfrac{{ - 7 \pm 1}}{2}\]
Either \[x = \dfrac{{ - 7 + 1}}{2} = \dfrac{{ - 6}}{2} = - 3\] or \[x = \dfrac{{ - 7 - 1}}{2} = \dfrac{{ - 8}}{2} = - 4\]
So, the two roots of the given quadratic equation are -3 and -4.
Clearly, we are getting the same results from both factorization method and discriminant method.
Note- In these types of problems, we can use either factorization method or discriminant method to obtain the roots of the given quadratic equation. But discriminant method is usually adopted because it is an easier method as compared to factorization method for finding the roots of the given quadratic equation.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 8 Maths: Engaging Questions & Answers for Success

Class 8 Question and Answer - Your Ultimate Solutions Guide

Trending doubts
Write a letter to the principal requesting him to grant class 10 english CBSE

Which of the following does not have a fundamental class 10 physics CBSE

State and prove the Pythagoras theorem-class-10-maths-CBSE

What is the full form of POSCO class 10 social science CBSE

State BPT theorem and prove it class 10 maths CBSE

A Gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE

